Criteria to distinguish neotectonic from other active faults: Examples from the Central Pyrenees

Authors

  • María Ortuño Candela Grup RISKNAT Departament de Geodinamica i Geofisica Facultat de Geologia / Universitat de Barcelona

Keywords:

neotectonics, non-tectonic faults, composite fault, active deformation

Abstract

In several settings, such us the high mountain environment or the karstic terrains, active faults might be the resultof non-tectonic processes. Neotectonic and non-tectonic processes causing faulting can be grouped under the term“active deformation”. To characterize the seismogenic potential of a fault and, thus, its associated seismic hazard,it is necessary to determine the causes of its activity. However, the nature of the deformation along a faults is,often, not obviuos. To deal with this problem, a number of criteria have been reviewed and proposed in order toconstitute a working-guide to determine the origin of faulting. Two examples of the Maladeta massif (SpanishCentral Pyrenees) illustrate how very different processes are capable to generate similar scarp-forms and how onesingle fault scarp might be the result of their simultaneous interaction.

Downloads

Download data is not yet available.

Author Biography

María Ortuño Candela, Grup RISKNAT Departament de Geodinamica i Geofisica Facultat de Geologia / Universitat de Barcelona

Investigadora postdoctoral y profesora

Dept. de Geodinámica y Geofísica

Universidad de Barcelona

Puesto anterior (2009-2011):

Investigadora postdoctoral

Centro de Geociencias

Universidad Nacional Autónoma de México

References

Bachmann, D.; Bouissou, S.; Chemenda, A. (2006). Influence of large scale topography on gravitational rock mass movements: new insights from physical modeling. Geophysical Research Letters, 33 (21) 1-4.

Chighira, M. (1992). Long-term gravitational deformation of rock by mass rock creep. Engineering Geology, 32 (3) 157-184.

Hampel, A.; Hetzel, R. (2006). Response of normal faults to glacial-interglacial fluctuations of ice and water masses on Earth’s surface, J. Geophys. Res., 111, B06406, doi:10.1029/2005JB004124.

McCalpin, J.P. (1999). Criteria for determining the seismic significance of sackungen and other scarplike landforms in

mountainous regions. Techniques for identifying faults and determining their origins, U.S. Nuclear Regulatory Commision,

NUREG/CR-5503, Appendix A, pp A122-A142.

Nocquet, J.M.; Calais, E. (2004). Geodetic measurements of crustal deformation in thewestern Mediterranean and Europe. Pure Appl. Geophys, 161, 661-681.Ortuño, M. (2008).

Deformación activa en el Pirineo Central: la falla Norte de la Maladeta y otras fallas activas. Unpublished PhD. Thesis, Universitat de Barcelona, 346 p.

Ortuño, M.; Queralt, P.; Martí, A.; Ledo, J.; Masana, E.; Perea, H.; Santanach, P. (2008). The North Maladeta Fault (Spanish

Central Pyrenees) as the Vielha 1923 earthquake seismic source: recent activity revealed by geomorphological and

geophysical research. Tectonophysics, 45, 246-262.

Ortuño, M.; Martí, A.; Martín-Closa, C.; Jiménez, G.; Martinetto, E.; Santanach, P. (2013). Palaeoenvironments of the Upper Miocene Prüedo basin: implications for the uplift of the Central Pyrenees. Journal of the Geological Society of London, 170 (1) 79 -92. DOI 10.1144/jgs2011-121

Pallàs, R.; Rodés, A.; Braucher, R.; Carcaillet, J.; Ortuño, M.; Bordonau, J.; Bourlès, D.; Vilaplana, J.M.; Masana, E.; Santanach, P. (2006). Late Pleistocene and Holocene glaciation in the Pyrenees: a critical review and new evidence from 10Be exposure ages, south-central. Pyrenees. Quat. Sci. Rev., 25, 2937-2963.

Stewart, I. S., Sauber, J. y Rose, J. (2000). Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quaternary Science Reviews, 19, 1367-1389.

Ustaszewski, M., Hampel, A. y Pfiffner, A. (2008). Composite faults in the Swiss Alps formed by the interplay of tectonics,

gravitation and postglacial rebound: an integrated field and modelling study. Swiss J. Geosci., DOI 10.1007/s00015-007-

-1.

Wells, D.L. y Coppersmith, K.J. (1994). Empirical relationships among magnitude, rupture length, rupture area, and surface

displacement. Bull. Seismol. Soc. Am., 82, 974-1002.

Published

2013-12-17