Criteria to distinguish neotectonic from other active faults: Examples from the Central Pyrenees
Keywords:
neotectonics, non-tectonic faults, composite fault, active deformationAbstract
In several settings, such us the high mountain environment or the karstic terrains, active faults might be the resultof non-tectonic processes. Neotectonic and non-tectonic processes causing faulting can be grouped under the term“active deformation”. To characterize the seismogenic potential of a fault and, thus, its associated seismic hazard,it is necessary to determine the causes of its activity. However, the nature of the deformation along a faults is,often, not obviuos. To deal with this problem, a number of criteria have been reviewed and proposed in order toconstitute a working-guide to determine the origin of faulting. Two examples of the Maladeta massif (SpanishCentral Pyrenees) illustrate how very different processes are capable to generate similar scarp-forms and how onesingle fault scarp might be the result of their simultaneous interaction.Downloads
References
Bachmann, D.; Bouissou, S.; Chemenda, A. (2006). Influence of large scale topography on gravitational rock mass movements: new insights from physical modeling. Geophysical Research Letters, 33 (21) 1-4.
Chighira, M. (1992). Long-term gravitational deformation of rock by mass rock creep. Engineering Geology, 32 (3) 157-184.
Hampel, A.; Hetzel, R. (2006). Response of normal faults to glacial-interglacial fluctuations of ice and water masses on Earth’s surface, J. Geophys. Res., 111, B06406, doi:10.1029/2005JB004124.
McCalpin, J.P. (1999). Criteria for determining the seismic significance of sackungen and other scarplike landforms in
mountainous regions. Techniques for identifying faults and determining their origins, U.S. Nuclear Regulatory Commision,
NUREG/CR-5503, Appendix A, pp A122-A142.
Nocquet, J.M.; Calais, E. (2004). Geodetic measurements of crustal deformation in thewestern Mediterranean and Europe. Pure Appl. Geophys, 161, 661-681.Ortuño, M. (2008).
Deformación activa en el Pirineo Central: la falla Norte de la Maladeta y otras fallas activas. Unpublished PhD. Thesis, Universitat de Barcelona, 346 p.
Ortuño, M.; Queralt, P.; Martí, A.; Ledo, J.; Masana, E.; Perea, H.; Santanach, P. (2008). The North Maladeta Fault (Spanish
Central Pyrenees) as the Vielha 1923 earthquake seismic source: recent activity revealed by geomorphological and
geophysical research. Tectonophysics, 45, 246-262.
Ortuño, M.; Martí, A.; Martín-Closa, C.; Jiménez, G.; Martinetto, E.; Santanach, P. (2013). Palaeoenvironments of the Upper Miocene Prüedo basin: implications for the uplift of the Central Pyrenees. Journal of the Geological Society of London, 170 (1) 79 -92. DOI 10.1144/jgs2011-121
Pallàs, R.; Rodés, A.; Braucher, R.; Carcaillet, J.; Ortuño, M.; Bordonau, J.; Bourlès, D.; Vilaplana, J.M.; Masana, E.; Santanach, P. (2006). Late Pleistocene and Holocene glaciation in the Pyrenees: a critical review and new evidence from 10Be exposure ages, south-central. Pyrenees. Quat. Sci. Rev., 25, 2937-2963.
Stewart, I. S., Sauber, J. y Rose, J. (2000). Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quaternary Science Reviews, 19, 1367-1389.
Ustaszewski, M., Hampel, A. y Pfiffner, A. (2008). Composite faults in the Swiss Alps formed by the interplay of tectonics,
gravitation and postglacial rebound: an integrated field and modelling study. Swiss J. Geosci., DOI 10.1007/s00015-007-
-1.
Wells, D.L. y Coppersmith, K.J. (1994). Empirical relationships among magnitude, rupture length, rupture area, and surface
displacement. Bull. Seismol. Soc. Am., 82, 974-1002.