Effectiveness and limits of scale independence in the depositional signatures of an experimental alluvial fan
DOI:
https://doi.org/10.17735/cyg.v39i1-2.105207Keywords:
alluvial fan, scale independence, physical modelling, geomorphological experimentsAbstract
Alluvial fans constitute attractive environments for human settlements in mountainous areas, however, their dynamic evolution entails a significant risk to the surrounding population and infrastructure. In recent decades there has been a remarkable development in the study of these landforms from an experimental approach, nevertheless, there are fundamental limitations in applying the principles of classical dynamical scaling to represent these systems. Therefore, it is necessary to assess how capable models are of capturing the dynamics of natural landscapes and to advance towards a quantitative understanding of the effectiveness and limits of natural scale independence in morphodynamics. To this aim, we performed a series of experiments with sediment-laden flows on a physical model of alluvial fan replicated at two different scales (1:1 and 3:4). The exposed areas associated with each experiment were quantified and mapped in a GIS. Exposure probability maps, descriptive and inferential statistical analysis of exposure percentages, and spatial statistical analysis of the exposure probability distribution were then conducted to evaluate the degree of statistical similarity of the patterns as the scale of the model was varied. The results obtained showed significant statistical variations in the distributary dynamics of both models, reflecting a dissimilarity in the kinematics of the processes occurring in the fan, which leads to the conclusion that, at least for a model under unconfined flow conditions similar to the one used in this study, scale independence does not fully apply. This implies that small-scale models should be used with caution, especially for the study of hazards in real alluvial fans, since the response in statistical terms on the indication of the hazard presents significant discrepancies when varying the scale of the model used.
Downloads
References
Alperin, M. (2013). Introducción al análisis estadístico de datos geológicos. Libros de Cátedra, Universidad Nacional de La Plata, 282 p. https://doi.org/10.35537/10915/34221
Antronico, L., Greco, R., Robustelli, G., Sorriso-Valvo, M. (2015). Short-term evolution of an active basin-fan system, Aspromonte, south Italy. Geomorphology, 228, 536–551. https://doi.org/10.1016/j.geomorph.2014.10.013
Blair, T.C., McPherson, J.G. (1994). Alluvial Fan Processes and Forms. In A.D. Abrahams, A.J. Parsons (Eds.) Geomorphology of Desert Environments (pp. 354–402). https://doi.org/10.1007/978-94-015-8254-4_14
Blair, T.C., McPherson, J.G. (2009). Processes and forms of alluvial fans. In A.J. Parsons, A.D. Abrahams (Eds.) Geomorphology of desert environments (pp. 413 – 467). https://doi.org/10.1007/978-1-4020-5719-9
Blasi, A., Mazzorana, B., Sturm, M., Gems, B.N. (2023). Spatial patterns of exposure to sediment-laden flows on an experimental alluvial fan. Cuaternario y Geomorfología, 37(1-2), 77-112. https://doi.org/10.17735/cyg.v37i1-2.95210
Bull, W.B. (1977). The alluvial-fan environment. Progress in Physical Geography, 1(2), 222–270. https://doi.org/10.1177/030913337700100202
Cazanacli, D., Paola, C., Parker, G., Asce, M. (2002). Experimental Steep, Braided Flow: Application to Flooding Risk on Fans. Journal of Hydrologic Engineering, 128(3), 1–9. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:3(322)
Chanson, H. (2004). Hydraulics of open channel flow (2nd ed.). Elsevier, 579 p.
Clarke, L.E. (2015). Experimental alluvial fans: Advances in understanding of fan dynamics and processes. Geomorphology, 244, 135–145. https://doi.org/10.1016/j.geomorph.2015.04.013
Clarke, L., Quine, T.A., Nicholas, A. (2010). An experimental investigation of autogenic behaviour during alluvial fan evolution. Geomorphology, 115(3–4), 278–285. https://doi.org/10.1016/j.geomorph.2009.06.033
Clarkson, P.J. (1999). Small scale hydraulic modelling of alluvial fans. Tesis doctoral, Lincoln University. https://hdl.handle.net/10182/3302
Clevis, Q., de Boer, P.,Wachter, M. (2003). Numerical modelling of drainage basin evolution and three-dimensional alluvial fan stratigraphy. Sedimentary Geology, 163(1–2), 85–110. https://doi.org/10.1016/S0037-0738(03)00174-X
Colombo, F. (2010). Abanicos aluviales: Secuencias y modelos de sedimentación. In A. Arche (Ed.) Sedimentología. Del Proceso Físico a La Cuenca Sedimentaria (pp. 131–224). Consejo Superior de Investigaciones Científicas, Madrid.
Davies, T.R., McSaveney, M.J., Clarkson, P.J. (2003). Anthropic aggradation of the Waiho River, Westland, New Zealand: Microscale modelling. Earth Surface Processes and Landforms, 28(2), 209–218. https://doi.org/10.1002/esp.449
Furlan, P., Pfister, M., Matos, J., Amado, C., Schleiss, A.J. (2019). Experimental repetitions and blockage of large stems at ogee crested spillways with piers. Journal of Hydraulic Research, 57(2), 250–262. https://doi.org/10.1080/00221686.2018.1478897
Guerit, L., Devauchelle, O., Lajeunesse, E., Barrier, L. (2014). Laboratory alluvial fans in one dimension. Physical Review E, 90(2), 022203, 1–7. https://doi.org/10.1103/PhysRevE.90.022203
Hamilton, P.B., Strom, K., Hoyal, D.C.J.D. (2013). Autogenic incision-backfilling cycles and lobe formation during the growth of alluvial fans with supercritical distributaries. Sedimentology, 60, 1498–1525. https://doi.org/10.1111/sed.12046
Harvey, A.M. (2002). The role of base-level change in the dissection of alluvial fans: Case studies from southeast Spain and Nevada. Geomorphology, 45(1–2), 67–87. https://doi.org/10.1016/S0169-555X(01)00190-8
Hooke, R. (1967). Processes on Arid-Region. The Journal of Geology, 75(4), 438–460. https://doi.org/10.1086/627271
Hooke, R. (1968). Model Geology: Prototype and Laboratory Streams: Discussion. GSA Bulletin, 79, 391–394. https://doi.org/10.1130/0016-7606(1968)79[391:MGPALS]2.0.CO;2
Hooke, R.B. Le, Rohrer, W.L. (1979). Geometry of alluvial fans: Effect of discharge and sediment size. Earth Surface Processes, 4(2), 147–166. https://doi.org/10.1002/ESP.3290040205
Hooke, R., Dorn, R. (1992). Segmentation of alluvial fans in Death Valley, California: new insights from surface exposure datting and laboratory modelling. Earth Surface Processes and Landforms Landforms, 17, 557–574. https://doi.org/10.1002/esp.3290170603
Kesseler, M., Heller, V., Turnbull, B. (2020). Grain Reynolds number scale effects in dry granular slides. Journal of Geophysical Research: Earth Surface, 125(1), 1-19. https://doi.org/10.1029/2019JF005347
Martin, J., Sheets, B., Paola, C., Hoyal, D. (2009). Influence of steady base-level rise on channel mobility, shoreline migration, and scaling properties of a cohesive experimental delta. Journal of Geophysical Research: Solid Earth, 114(3), 1–15. https://doi.org/10.1029/2008JF001142
Mazzorana, B., Ghiandoni, E., Picco, L. (2020). How do stream processes affect hazard exposure on alluvial fans? Insights from an experimental study. Journal of Mountain Science, 17(4), 753–772. https://doi.org/10.1007/s11629-019-5788-x
Mokarram, M., Pourghasemi, H.R., Tiefenbacher, J.P. (2021). Morphometry of AFs in upstream and downstream of floods in Gribayegan, Iran. Natural Hazards, 108(1), 425–450 https://doi.org/10.1007/s11069-021-04690-0
Okunishi, K., Suwa, H. (2001). Assessment of debris-flow hazards of alluvial fans. Natural Hazards, 23(2–3), 259–269. https://doi.org/10.1023/A:1011162516211
Paola, C. (2000). Quantitative models of sedimentary basin filling. Sedimentology, 47, 121-178. https://doi.org/10.1046/j.1365-3091.2000.00006.x
Paola, C., Straub, K., Mohrig, D., Reinhardt, L. (2009). The “unreasonable effectiveness” of stratigraphic and geomorphic experiments. Earth-Science Reviews, 97(1–4), 1–43. https://doi.org/10.1016/j.earscirev.2009.05.003
Peakall, J., Ashworth, P., Best, J. (1996). Physical modelling in fluvial geomorphology: principles, applications and unresolved issues. In B.L. Rhoads, C.E. Thorn (Eds.) The scientific nature of geomorphology, (pp. 221-253). Wiley & Sons.
Reitz, M.D., Jerolmack, D.J., Swenson, J.B. (2010). Flooding and flow path selection on alluvial fans and deltas. Geophysical Research Letters, 37, 1–5. https://doi.org/10.1029/2009GL041985
Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L., Nakamura, F., Ravazzolo, D., Rickenmann, D., Sanz-Ramos, M., Stoffel, M., Wohl, E. (2019). Characterization of wood-laden flows in rivers. Earth Surface Processes and Landforms, 44(9), 1694–1709. https://doi.org/10.1002/esp.4603
Santangelo, N., Santo, A., Di Crescenzo, G., Foscari, G., Liuzza, V., Sciarrotta, S., Scorpio, V. (2011). Flood susceptibility assessment in a highly urbanized alluvial fan: The case study of Sala Consilina (southern Italy). Natural Hazards and Earth System Science, 11(10), 2765–2780. https://doi.org/10.5194/nhess-11-2765-2011
Schalko, I. (2017). Large wood accumulation probability at a single bridge pier. In Proceedings of the 37th IAHR World Congress (pp. 1704–1713). International Association for Hydro-Environment Engineering and Research (IAHR).
Schumm, S.A. (1977). The Fluvial System. John Wiley and Sons, New York.
Schumm, S.A., Mosley, M.P., Weaver, W. (1987). Experimental fluvial geomorphology. John Wiley and Sons Inc., New York, NY.
Straight, B. (1992). The Water Flow and Building Behaviour of a Small Alluvial Fan: A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Applied Science at Lincoln University. Tesis Doctoral. Lincoln University.
Straub, K.M., Esposito, C.R. (2013). Influence of water and sediment supply on the stratigraphic record of alluvial fans and deltas: Process controls on stratigraphic completeness. Journal of Geophysical Research: Earth Surface, 118(2), 625–637. https://doi.org/10.1002/jgrf.20061
Straub, K.M., Wang, Y. (2013). Influence of water and sediment supply on the long-term evolution of alluvial fans and deltas: Statistical characterization of basin-filling sedimentation patterns. Journal of Geophysical Research: Earth Surface, 118(3), 1602–1616. https://doi.org/10.1002/jgrf.20095
QGIS (2018). QGIS Python Plugins Repository. Accessed online at: https://plugins.qgis.org/plugins/TomBio/
van Dijk, M., Postma, G., Kleinhans, M.G. (2008). Autogenic cycles of sheet and channelised flow on fluvial fan-deltas. In C.M. Dohmen-Janssen, S.J.M.H. Hulchser. River, Coastal, and Estuarine Morphodynamics (pp. 823–828). Taylor and Francis Group, London. https://doi.org/10.1201/NOE0415453639-c104
van Dijk, M., Postma, G., Kleinhans, M. (2009). Autocyclic behaviour of fan deltas: an analogue experimental study. Sedimentology, 56, 1569–1589. https://doi.org/10.1111/j.1365-3091.2008.01047.x
van Dijk, M., Kleinhans, M.G., Postma, G., Kraal, E. (2012). Contrasting morphodynamics in alluvial fans and fan deltas: effect of the downstream boundary. Sedimentology, 59, 2125–2145. https://doi.org/10.1111/j.1365-3091.2012.01337.x
Whipple, K.X., Parker, G., Paola, C., Mohrig, D. (1998). Channel dynamics, sediment transport, and the slope of alluvial fans: experimental study. The Journal of geology, 106(6), 677-694. https://doi.org/10.1086/516053
Wigner, E.P. (1990). The Unreasonable Effectiveness of Mathematics in the Natural Sciences. Mathematics and Science, 291–306. https://doi.org/10.1142/9789814503488_0018
Yalin, M.S. (1971). Theory of hydraulic models. Macmillan Press. https://doi.org/10.1007/978-1-349-00245-0
Zarn, B., Davies, T.R.H. (1994). The significance of processes on alluvial fans to hazard assessment. Zeitschrift Für Geomorphologie, 38(4), 487–500. https://doi.org/10.1127/ZFG/38/1994/487