Cronología “extrema”: Generación de modelos cronológicos robustos a partir de diferentes métodos de datación; ejemplos en la Península Ibérica

Autores/as

  • Ana Moreno Caballud IPE (CSIC)
  • Graciela Gil-Romera
  • Miguel Bartolomé
  • Blas Valero-Garcés
  • Penélope González-Sampériz

DOI:

https://doi.org/10.17735/cyg.v36i3-4.93928

Palabras clave:

datación combinando métodos; glaciar; paleolago; 14C; OSL; 210Pb

Resumen

En este trabajo se presenta el reto que muchas veces supone conseguir un buen modelo de edad independiente en una secuencia paleoambiental. Esta aproximación pasa por la necesidad de combinar diferentes metodologías de datación, con la complejidad que esto implica. Se han seleccionado dos ejemplos de dos archivos paleoambientales muy distintos, y con cronologías muy diferentes. El registro de El Cañizar de Villarquemado, un paleolago en la provincia de Teruel, que alberga en sus sedimentos los últimos 135.000 años de historia y constituye la secuencia continental más larga y continua estudiada en la mitad septentrional de Iberia. Para poder establecer un modelo de edad robusto e independiente fue necesario combinar dataciones de radiocarbono AMS, U-Th, OSL, IRSL, paleomagnetismo y criptotefro-cronología, aunque no todas las técnicas resultaron exitosas. El segundo ejemplo se centra en el reto de datar el hielo presente en el icónico glaciar de Monte Perdido, situado en el Pirineo Central, Huesca. Este registro se consiguió datar mediante radiocarbono en diferentes tipos de muestras y aplicando las técnicas de 210Pb y 137Cs para el periodo más reciente. En ambos ejemplos, las combinaciones de métodos y tipo de muestras datadas permitieron obtener cronologías robustas gracias a una importante inversión de tiempo y financiación, siendo el resultado de la colaboración de varios equipos de investigación. En este trabajo se esbozan las dificultades encontradas en la elaboración de ambas cronologías y se presenta el resultado final, fruto de una modelización que combina las diferentes aproximaciones para obtener los modelos de edad definitivos.

Citas

Allen, J.R.M., Huntley, B., (2009). Last Interglacial palaeovegetation, palaeoenvironments and chronology: a new record from Lago Grande di Monticchio, southern Italy. Quaternary Science Reviews 28, 1521–1538. https://doi.org/10.1016/j.quascirev.2009.02.013

Aranbarri, J., González-Sampériz, P., Valero-Garcés, B., Moreno, A., Gil-Romera, G., Sevilla-Callejo, M., García-Prieto, E., Di Rita, F., Mata, M.P., Morellón, M., Magri, D., Rodríguez-Lázaro, J., Carrión, J.S., (2014). Rapid climatic changes and resilient vegetation during the Lateglacial and Holocene in a continental region of south-western Europe. Global and Planetary Change 114, 50–65. https://doi.org/10.1016/j.gloplacha.2014.01.003

Baldini, J.U.L., Lechleitner, F.A., Breitenbach, S.F.M., van Hunen, J., Baldini, L.M., Wynn, P.M., Jamieson, R.A., Ridley, H.E., Baker, A.J., Walczak, I.W., Fohlmeister, J., (2021). Detecting and quantifying palaeoseasonality in stalagmites using geochemical and modelling approaches. Quaternary Science Reviews 254, 106784. https://doi.org/10.1016/j.quascirev.2020.106784

Bayes, T., Price, l, (1763). LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S. Philosophical Transactions of the Royal Society of London 53, 370–418. https://doi.org/10.1098/rstl.1763.0053

Blaauw, M., (2010). Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology 5, 512–518. https://doi.org/10.1016/j.quageo.2010.01.002

Blaauw, M., Christen, J. Andres, López, M.A.A., Vázquez, J.E., González, Ó.M., Belding, T., Theiler, J., Gough, B., Karney, C., (2021). rbacon: Age-Depth Modelling using Bayesian Statistics. https://cran.r-project.org/web/packages/rbacon/rbacon.pdf

Blaauw, M., Christen, J.A., (2011). Flexible Paleoclimate Age-Depth Models Using an Autoregressive Gamma Process. Bayesian Analysis 6, 457–474. https://doi.org/10.1214/ba/1339616472

Blaauw, M., Christen, J.A., Vázquez, J.E., Goring, S., 2021. clam: Classical Age-Depth Modelling of Cores from Deposits. CRAN (2019). URL https://CRAN.R-project.org/package=clam

Brauer, A., Hajdas, I., Blockley, S.P.E., Bronk Ramsey, C., Christl, M., Ivy-Ochs, S., Moseley, G.E., Nowaczyk, N.N., Rasmussen, S.O., Roberts, H.M., Spötl, C., Staff, R.A., Svensson, A., (2014). The importance of independent chronology in integrating records of past climate change for the 60–8 ka INTIMATE time interval. Quaternary Science Reviews, 106, 47–66. https://doi.org/10.1016/j.quascirev.2014.07.006

Buck, C.E., Juárez, M.A., (2020). Modelización bayesiana de radiocarbono para principiantes, in: Métodos cronométricos en arqueología, prehistoria y paleontología, 2020, ISBN 978-84-17946-34-0, págs. 297-314. https://eprints.whiterose.ac.uk/174268/

Eichler, A., Schwikowski, M., Gäggeler, H.W., Furrer, V., Synal, H.-A., Beer, J., Saurer, M., Funk, M., (2000). Glaciochemical dating of an ice core from upper Grenzgletscher (4200 m a.s.l.). Journal of Glaciology 46, 507–515. https://doi.org/10.3189/172756500781833098

Ewing, M.E., Reese, C.A., Nolan, M.A., (2014). The potential effects of percolating snowmelt on palynological records from firn and glacier ice. Journal of Glaciology 60, 661–669. https://doi.org/10.3189/2014JoG13J158

Festi, D., Carturan, L., Kofler, W., dalla Fontana, G., de Blasi, F., Cazorzi, F., Bucher, E., Mair, V., Gabrielli, P., Oeggl, K., (2017). Linking pollen deposition and snow accumulation on the Alto dell’Ortles glacier (South Tyrol, Italy) for sub-seasonal dating of a firn temperate core. The Cryosphere 11, 937–948. https://doi.org/10.5194/tc-11-937-2017

García-Ruiz, J.M., Palacios, D., Andrés, N. de, Valero-Garcés, B.L., López-Moreno, J.I., Sanjuán, Y., (2014). Holocene and ‘Little Ice Age’ glacial activity in the Marboré Cirque, Monte Perdido Massif, Central Spanish Pyrenees. The Holocene 24, 1439–1452. https://doi.org/10.1177/0959683614544053

García-Ruiz, J.M., Palacios, D., Andrés, N., López-Moreno, J.I., (2020). Neoglaciation in the Spanish Pyrenees: a multiproxy challenge. Med. Geosc. Rev. 2, 21–36. https://doi.org/10.1007/s42990-020-00022-9

González-Sampériz, P., Gil-Romera, G., García-Prieto, E., Aranbarri, J., Moreno, A., Morellón, M., Sevilla-Callejo, M., Leunda, M., Santos, L., Franco-Múgica, F., Andrade, A., Carrión, J.S., Valero-Garcés, B.L., (2020). Strong continentality and effective moisture drove unforeseen vegetation dynamics since the last interglacial at inland Mediterranean areas: The Villarquemado sequence in NE Iberia. Quaternary Science Reviews 242, 106425. https://doi.org/10.1016/j.quascirev.2020.106425

González-Sampériz, P., Leroy, S.A.G., Carrión, J.S., Fernández, S., García-Antón, M., Gil-García, M.J., Uzquiano, P., Valero-Garcés, B., Figueiral, I., (2010). Steppes, savannahs, forests and phytodiversity reservoirs during the Pleistocene in the Iberian Peninsula. Review of Palaeobotany and Palynology, Iberian Floras through Time: Land of Diversity and Survival 162, 427–457. https://doi.org/10.1016/j.revpalbo.2010.03.009

Hajdas, I., (2008). Radiocarbon dating and its applications in Quaternary studies. E&G Quaternary Sci. J. 57, 2–24. https://doi.org/10.3285/eg.57.1-2.1

Herren, P.-A., Eichler, A., Machguth, H., Papina, T., Tobler, L., Zapf, A., Schwikowski, M., (2013). The onset of Neoglaciation 6000 years ago in western Mongolia revealed by an ice core from the Tsambagarav mountain range. Quaternary Science Reviews 69, 59–68. https://doi.org/10.1016/j.quascirev.2013.02.025

Jenk, T.M., Szidat, S., Bolius, D., Sigl, M., Gäggeler, H.W., Wacker, L., Ruff, M., Barbante, C., Boutron, C.F., Schwikowski, M., (2009). A novel radiocarbon dating technique applied to an ice core from the Alps indicating late Pleistocene ages. Journal of Geophysical Research: Atmospheres 114. https://doi.org/10.1029/2009JD011860

Leunda, M., González‐Sampériz, P., Gil‐Romera, G., Bartolomé, M., Belmonte‐Ribas, Á., Gómez‐García, D., Kaltenrieder, P., Rubiales, J.M., Schwörer, C., Tinner, W., Morales‐Molino, C., Sancho, C., (2019). Ice cave reveals environmental forcing of long-term Pyrenean tree line dynamics. Journal of Ecology 107, 814–828. https://doi.org/10.1111/1365-2745.13077

Lian, O.B., Roberts, R.G., (2006). Dating the Quaternary: progress in luminescence dating of sediments. Quaternary Science Reviews, Dating the Quaternary: progress in luminescence dating of sediments 25, 2449–2468. https://doi.org/10.1016/j.quascirev.2005.11.013

López-Moreno, J.I., Alonso-González, E., Monserrat, O., Del Río, L.M., Otero, J., Lapazaran, J., Luzi, G., Dematteis, N., Serreta, A., Rico, I., Serrano-Cañadas, E., Bartolomé, M., Moreno, A., Buisan, S., Revuelto, J., (2019). Ground-based remote-sensing techniques for diagnosis of the current state and recent evolution of the Monte Perdido Glacier, Spanish Pyrenees. J. Glaciol. 65, 85–100. https://doi.org/10.1017/jog.2018.96

López-Moreno, J.I., Revuelto, J., Rico, I., Chueca-Cía, J., Julián, A., Serreta, A., Serrano, E., Vicente-Serrano, S.M., Azorin-Molina, C., Alonso-González, E., García-Ruiz, J.M., (2016). Thinning of the Monte Perdido Glacier in the Spanish Pyrenees since 1981. The Cryosphere 10, 681–694. https://doi.org/10.5194/tc-10-681-2016

Magri, D., (1999). Late Quaternary vegetation history at Lagaccione near Lago di Bolsena (central Italy). Review of Palaeobotany and Palynology 106, 171–208. https://doi.org/10.1016/S0034-6667(99)00006-8

Moore, P.D., Webb, J.A., Collinson, M.E., (1991). Pollen Analysis, Second. ed. Blackwell Scientific Publications.

Moreno, A., Bartolomé, M., López-Moreno, J.I., Pey, J., Corella, J.P., García-Orellana, J., Sancho, C., Leunda, M., Gil-Romera, G., González-Sampériz, P., Pérez-Mejías, C., Navarro, F., Otero-García, J., Lapazaran, J., Alonso-González, E., Cid, C., López-Martínez, J., Oliva-Urcia, B., Faria, S.H., Sierra, M.J., Millán, R., Querol, X., Alastuey, A., García-Ruíz, J.M., (2021). The case of a southern European glacier which survived Roman and medieval warm periods but is disappearing under recent warming. The Cryosphere 15, 1157–1172. https://doi.org/10.5194/tc-15-1157-2021

Osete, M.-L., Martín-Chivelet, J., Rossi, C., Edwards, R.L., Egli, R., Muñoz-García, M.B., Wang, X., Pavón-Carrasco, F.J., Heller, F., (2012). The Blake geomagnetic excursion recorded in a radiometrically dated speleothem. Earth and Planetary Science Letters 353–354, 173–181. https://doi.org/10.1016/j.epsl.2012.07.041

R Development Core Team, (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

R Studio CoreTeam, (2019). RStudio: Integrated Development for R. URL http://www.rstudio.com/

Rubio, J. C. y Simón, J. L. (2007). Tectonic subsidence v. erosional lowering in a controversial intramontane depression: the Jiloca basin (Iberian Chain, Spain), Geological Magazine, 144, 127–141, https://doi.org/10.1017/S0016756806002949

Sadori, L., Koutsodendris, A., Masi, A., Bertini, A., Combourieu-Nebout, N., Francke, A., Kouli, K., Joannin, S., Mercuri, A.M., Peyron, O., Torri, P., Wagner, B., Zanchetta, G., Sinopoli, G., Donders, T.H., (2016). Pollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (SE Europe) during the past 500 ka. Biogeosciences 13, 1423-1437. https://doi.org/10.5194/bg-13-1423-2016

Sainz Ollero, H., Van Staalduinen, M., (2012). Iberian steppes. In: Werger, M.J.A., van Staalduinen, M.A. (Eds.), Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World. Springer, Dordrecht, Netherland, pp. 273-288. https://doi.org/10.1007/978-94-007-3886-7_9

Sanchez-Cabeza, J.A., Masqué, P., Ani-Ragolta, I., (1998). 210Pb and210Po analysis in sediments and soils by microwave acid digestion. J Radioanal Nucl Chem 227, 19–22. https://doi.org/10.1007/BF02386425

Tzedakis, P.C., Hooghiemstra, H., Palike, H., (2006). The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy and long-term vegetation trends. Quaternary Science Reviews 25 (23-24), 3416-3430. https://doi.org/10.1016/j.quascirev.2006.09.002

Tylmann, W., Zolitschka, B., (2020). Annually Laminated Lake Sediments—Recent Progress. Quaternary 3, 5. https://doi.org/10.3390/quat3010005

Uglietti, C., Zapf, A., Jenk, T.M., Sigl, M., Szidat, S., Salazar, G., Schwikowski, M., (2016). Radiocarbon dating of glacier ice: overview, optimisation, validation and potential. The Cryosphere 10, 3091–3105. https://doi.org/10.5194/tc-10-3091-2016

Valero-Garcés, B.L., González-Sampériz, P., Gil-Romera, G., Benito, B.M., Moreno, A., Oliva-Urcia, B., Aranbarri, J., García-Prieto, E., Frugone, M., Morellón, M., Arnold, L.J., Demuro, M., Hardiman, M., Blockley, S.P.E., Lane, C.S., (2019). A multi-dating approach to age-modelling long continental records: The 135 ka El Cañizar de Villarquemado sequence (NE Spain). Quaternary Geochronology 54, 101006. https://doi.org/10.1016/j.quageo.2019.101006

Descargas

Publicado

2022-12-15

Número

Sección

Artículos de Investigación