Análisis de la erosividad de la lluvia: procesos, índices y fronteras de conocimiento

Autores/as

  • Marta Angulo-Martínez Estación Experimental Aula Dei, EEAD-CSIC, Campus de Aula Dei, Av. Montañana 1.005. 50059 – Zaragoza, España
  • Santiago Beguería Estación Experimental Aula Dei, EEAD-CSIC, Campus de Aula Dei, Av. Montañana 1.005. 50059 – Zaragoza, España

Palabras clave:

Erosividad de la lluvia, EI30, energía cinética, DSD

Resumen

Este artículo revisa los trabajos precedentes relacionados con la capacidad erosiva de la lluvia. La precipitación es el principal agente de erosión hídrica del suelo.. A partir de principios del siglo XX se comenzaron a cuantificar los procesos implicados en la erosión del suelo, lo que permitió el desarrollo de modelos e índices capaces de describir la capacidad erosiva de la precipitación. Éstos, en general, están basados en la energía cinética de las gotas, fundamental para estimar la erosión por impacto. Los estudios empíricos encontraron una relación entre la energía cinética y la intensidad de la precipitación a escalas temporales de alta resolución, permitiendo la estimación de la energía de la lluvia mediante relaciones matemáticas en función de la intensidad, las cuales están relacionadas con las características atmosféricas, climáticas y geográficas propias de los eventos de lluvia de cada lugar. En el presente artículo se revisan también los avances instrumentales recientes que permiten una medición más directa y precisa de la energía cinética de la lluvia, y se enumeran brevemente los trabajos relacionados dentro del contexto español.

Citas

Almorox Alonso, J.; López Bermúdez, F.; Rafaelli, S. (2010). La degradación de los suelos por erosión hídrica. Métodos de estimación. Edit.um Ediciones de la Universidad de Murcia. Murcia, 384 pág.

Angulo-Martínez, M.; Beguería, S., (2009). Estimating rainfall erosivity from daily precipitation records: A comparison among methods using data from the Ebro Basin (NE Spain). Journal of Hydrology, 379, 111-121.

Angulo-Martínez, M.; López-Vicente, M.; Vicente-Serrano, S.M.; Beguería, S. (2009). Mapping rainfall erosivity at a regional scale: a comparison of interpolation methods in the Ebro Basin (NE Spain). Hydrology and Earth Systems Science, 13, 1907-1920.

Angulo-Martínez, M.; Beguería, S. (2012a). Do atmospheric teleconnection patterns influence rainfall erosivity? A study of NAO, MO and WeMO in NE Spain, 1955-2006. Journal of Hydrology, 450-451, 168-179.

Angulo-Martínez, M.; Beguería, S.; Navas, A.; Machín, J. (2012b). Splash erosion under natural rainfall on three soil types in NE Spain. Geomorphology, 175-176, 38-44.

Angulo-Martínez, M.; Beguería, S. (2012c). Trends in rainfall erosivity in NE Spain at annual, seasonal and daily scales, 1955-2006, Hydrology Earth and Systems Science, 16, 3551-3559.

Angulo-Martínez, M.; Beguería, S.; Kyselý, J. (2012d). Reliability of rainfall erosivity indices in comparison with measured by optical disdrometer from natural rain events. Soil Science Society of America Journal, (enviado).

Arnoldus, H.M.J. (1977). Methodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in Morocco. FAO Soils Bulletin, 34, 39-51.

Atlas, D.; Ulbrich, C.W. (1977). Path and area integrated rainfall measurement by a microwave attenuation in the 1-3 cm band. Journal of Applied Meteorology, 16, 1322-1331.

Bagarello, V.; D’Asaro, F. (1994). Estimating single storm erosion index. Transactions of the American Society of Agricultural Engineers, 37, 785-791.

Baruah, P.C. (1973). An investigation of drop size distribution of rainfall in Thailand. MSc Thesis no. 528, Asian Institute of Technology, Bangkok.

Beard, K.V. (1977). Terminal velocity adjustment for cloud and precipitation drops aloft. Journal of Atmospheric Sciences, 34, 1293-1298.

Bentley, W.A. (1904). Studies of raindrops and raindrop phenomena, Monthly Weather Review, 32, 450-456.

Best, A.C. (1950). The size distribution of raindrops. Quarterly Journal of the Royal Meteorological Society, 76, 16-36.

Bisal, F. (1960). The effect of raindrop size and impact velocity on sand splash. Canadian Journal of Soil Science, 40, 242-245.

Blanchard, D.C. (1953). Raindrop size distributions in Hawaiian rains. Journal of Meteorology, 10, 457–473

Bloemink, H.I.; Lanzinger, E. (2005). Precipitation type from the Thies disdrometer. WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation (TECO-2005) Bucharest: Romania, 3(11). 4-7 May.

Boardman, J.; Poesen, J. (2006). Soil erosion in Europe. Chichester: Wiley. ISBN 978-0-470-85910-0.

Bollinne, A.; Florins, P.; Hecq, P.; Homerin, D.; Renard, V.; Wolfs, J.L. (1984). Etude de l’énergie des pluies en climat tempéré océanique d’Europe Atlantique. Z. Geomorph. N.F., 27-35.

Brandt, C.J. (1990). Simulation of size distribution and erosivity raindrops and throughfall drops. Earth Surface Processes, 15, 687-698.

Brawn, D.; Upton, G. (2008). Estimation of an atmospheric gamma drop size using disdrometer data. Atmospheric Research. 87, 66-79.

Brown, L.C.; Foster, G.R. (1985). Estimating storm EI using idealized intensity distributions. ASAE Paper, 2528, 26 pp.

Brown, L.C.; Foster, G.R. (1987). Storm erosivity using idealized intensity distributions. Transactions of the ASAE, 30, 379-386.

Carter, C.E.; Greer, J.D.; Braud, H.J.; Floyd, J.M. (1974). Raindrop characteristics in South Central United States. Transactions of the ASAE, 17, 1033-1037.

Cerdà, A. (1997). Rainfall drop size distribution in the Western Mediterranean basin, Valencia, Spain. Catena, 30, 169-182.

Cerro, C.; Bech, J.; Codina, B.; Lorente, J. (1998). Modeling rain erosivity using disdrometric techniques. Soil Science Society of America Journal, 62, 731-735.

Coutinho, M.A.; Tomás, P.P. (1995). Characterization of raindrop size distributions at the Vale Formoso Experimental Erosion Center. Catena, 25, 187–197.

Defant, A. (1905). Gesetzmässigkeiten in der Verteilung der verschiedenen Tropfengrössen bei Regenfällen. Akademie d. Wissenschaften, Vienna, Math.-Naturwiss. Klasse, Sitzungsberichte, 114, 585-646.

De Luis, M.; González-Hidalgo, J.C.; Longares, L.A. (2010). Is rainfall erosivity increasing in the Mediterranean Iberian Peninsula? Land Degradation and Development, 21, 139-144.

De Luna, E.; Laguna, A.; Giráldez, J.V. (2000). The role of olive trees in rainfall erosivity and runoff and sediment yield in the soil beneath. Hydrology and Earth System Sciences, 4, 141-153

Domínguez-Romero, L.; Ayuso Muñoz, J.L.; García Marín, A.P. (2007). Annual distribution of rainfall erosivity in western Andalusia, southern Spain. Journal of Soil and Water Conservation, 62, 390-401.

Ellison, W.D. (1944). Studies of raindrop erosion. Agricultural Engineering 25, 181-182.

Elsenbeer, H.; Cassel, D.K.; Tinner, W. (1993). A daily rainfall erosivity model for Western Amazonia. Journal of Soil and Water Conservation, 48, 439-444.

Elwell, H.A.; Stocking, M.A. (1975). Parameters for estimating annual runoff and soil loss from agricultural lands in Rhodesia. Water Resources Research, 11, 601-605.

Elwell, H.A.; Stocking, M.A. (1976). Vegetal cover to estimate soil erosion hazard in Rhodesia. Geoderma, 15, 61-70.

Fernández-Raga, M.; Castro, A.; Palencia, C.; Calvo, A.I.; Fraile, R. (2009). Rain events on 22 October 2006 in León (Spain): Drop Size Spectra. Atmospheric Research, 93, 619-635.

Fernández-Raga, M.; Fraile, R.; Keizer, J.J.; Varela Teijeiro, M.E.; Castro, A.; Palencia, C.; Calvo, A.I.; Koenders, J.; Da Costa Marques, R.L. (2010). The kinetic energy of rain measured with an optical disdrometer: an application to splash erosion. Atmospheric Research, 96, 225-240.

García Ruíz, J.R.; López Bermúdez, F. (2009). La erosión del suelo en España. Sociedad Española de Geomorfología. Zaragoza, 441 pág.

González-Hidalgo, J.C.; Peña-Monnè, J.L.; de Luis, M. (2007). A review of daily soil erosion in western Mediterranean areas. Catena, 71, 193-199

Gruber, A.; Levizzani, V. (2008). Assessment of Global Precipitation Products. WCRP-128, WMO/TD No. 1430. World Climate Research Programme, p. 50.

Hall, M.J., (1970). Use of stain method in determining the drop size distribution of coarse liquid sprays. Transations of ASAE 30, 33-37.

Hudson, N.W., (1963). Raindrop size distribution in high intensity rainstorms. Rhodesian Journal of Agricultural Research, 1, 6-11.

Hudson, N.W. (1971). Soil Conservation, Batsford Ltd, London, 388 pp

Hudson, N.W. (1995). Soil conservation. Third Edition. Batsford. London 304 pp.

ICONA. (1988). Agresividad de la lluvia en España. Valores del factor R de la Ecuación Universal de Pérdida de Suelo, Ministerio de Agricultura, Pesca y Alimentación, España.

Jayawardena, A.W.; Rezaur, R.B. (2000). Measuring drop size distribution and kinetic energy of rainfall using a force transducer. Hydrological Processes 14, 37-49.

Joss, J.; Waldvogel, A. (1967). Ein Spektrograph für Niederschlagstropfen mit automatischer Auswertung. Pure and Applied Geophysics PAGEOPH, 68, 240-246.

Joss, J.; Gori, E. (1978). Shapes of raindrop size distributions. Journal of Applied Meteorology, 17, 1054-1061.

Ker, A.D.R. (1954). The measurement of rainfall intensity, drop-size distribution and impactive force, unpublished. Thesis Dip. Trop. Agric., Trinidad.

Kinnell, P.I.A. (1973). The problem of assessing the erosive power of rainfall from meteorological observations. Soil Science Society of America Proceedings, 37, 617-621

Kinnell, P.I.A., 1980. Rainfall intensity-kinetic energy relationships for soil loss prediction. Soil Science Society of America Proceedings, 45, 153-155.

Kinnel, P.I.; McGregor, K.C.; Rosewell, C.J. (1994) The IxEA Index as an alternative to the EI30 erosivity index. Transactions of the ASAE, 37, 1449-1156

Kinnell, P.I.A. (2005). Raindrop-impact-induced erosion processes and prediction: a review. Hydrological Processes, 19, 2815-2844.

Kinnell, P.I.A. (2010). Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review. Journal of Hydrology, 385, 384-397.

Kowal, J. (1972). Effect of an exceptional storm on soil conservation at Samaru, Nigeria. Samaru. Research Bulletin. 141, Institute of Agricultural Research., Samaru, Nigeria, pp. 163-172.

Kowal, J.M.; Kassam, A.H., (1976). Energy and instruments intensity of rainstorms at Samaru, northern Nigeria. Tropical Agriculture, 53, 185-198.

Kowal, J.M.; Kassam, A.H. (1978). Agricultural Ecology of Savanna: A Study of West Africa. Clarendon Press, Oxford, UK, 403 pp.

Lal, R. (1976). Soil erosion on alfisols in Western Nigeria. III. Effects of rainfall characteristics. Geoderma 16, 389-401

Laws, J.S.; Parsons, D.A. (1943). Relation of raindrop size to intensity. Transactions of American Geophysical Union, 24, 452-460

Laws, J.O. (1941). Measurements of the fall velocity of water drops and raindrops. Transactions of American Geophysical Union, 22, 709-721.

Lenard, P. (1904). Über Regen. Meteor. Z., 21, 248-262.

López-Vicente, M.; Navas, A.; Machin, J. (2008). Identifying erosive periods by using RUSLE factors in mountain fields of the Central Spanish Pyrenees. Hydrology Earth Systems Sciences, 12, 1-13.

Marshall, J.S.; Palmer, W.M. (1948). Relation of raindrop size to intensity. Journal of Meteorology, 5, 165-166.

Martinez-Casasnovas, J.A.; Ramos, M.C.; Ribes-Dasi, M. (2002). Soil erosion caused by extreme rainfall events: mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma, 105, 125-140.

McCool, D.K.; Robinette, M.J.; King, J.T.; Molanu, M.; Young, J.L. (1978). Raindrop characteristics in the Pacific Northwest. Transactions of American Geophysical Union, 59 (abstract).

McIsaac, G.F. (1990). Apparent geographic and atmospheric influences on raindrop sizes and rainfall kinetic energy. Journal of Soil and Water Conservation. 45, 663-666.

Mihara, Y. (1952). Raindrop and soil erosion. Bulletin of the National Institute of Agricultural Science Japan, series A nº1.

Montero-Martínez, G.; Kostinski, A.B.; Shaw, R.A.; García-García, F. (2009). Do all raindrops fall at terminal speed?, Geophysical Research Letters, 36, L11818.

Montgomery, D.R. (2007) Soil erosion and agricultural sustainability. PNAS 104: 13268-13272.

Morgan, R.P.C. (1977). Soil erosion in the United Kingdom: field studies in the Silsoe area, 1973–75. National College of Agricultural Engineering Silsoe Occasional Paper 4.

Morgan, R.P.C. (2005). Soil erosion and conservation. Third edition, Blackwell publishing, Oxford Publishing, UK. 303 p.

Mutchler, C.K.; Hansen, L.M. (1970). Splash of a waterdrop at terminal velocity. Transactions of American Geophysical Union, 31, 836-842.

Mutchler, C.K., (1971). Splash droplet production by water drop impact. Water Resources Research, 7, 1024-1030.

Navas, A.; Alberto, F.; Machín, J.; Galán, A. (1990). Design and operation of a rainfall simulator for field studies of runoff and soil erosion. Soil Technology, 3, 385-397.

Nearing, M.A. (1998). Why soil erosion models over-predict small soil losses and under-predict large soil losses. Catena, 32, 15-22.

Nyssen, J.; Vandenreyken, H.; Poesen, J.; Moeyersons, J.; Deckers, J.; Haile, M., Salles, C.; Govers, G. (2005). Rainfall erosivity and variability in the Northern Ethiopian Highlands. Journal of Hydrology, 311, 172-187.

Onaga, K.; Shirai, K.; Yoshinaga, A. (1988). Rainfall erosion and how to control its effects on farmland in Okinawa. En: Rimwanich, S. (Ed.), Land Conservation for Future Generations. Department of Land Development, Bangkok, pp. 627–639.

Onchev, N.G. (1985) Universal index for calculating rainfall erosivity. En S.A. El Swaify; W.C. Moldenhauer; A. Lo (eds) Soil erosion and conservation: 424 431

Osuji, G.E. (1989). Raindrop characteristics in the humid tropics. Journal of Environmental Management, 28, 227-233.

Park, S.W.; Mitchell, J.K.; Bubenzer, G.D. (1982). Splash erosion modelling: physical analysis. Transactions of the ASAE, 25, 357-361.

Park, S.W.; Mitchell, J.K.; Bubenzer, G.D. (1983) Rainfall characteristics and their relation to splash erosion. Transactions of the ASAE, 26, 795-804

Petkovsek, G.; Mikos, M. (2004). Estimating the R factor from daily rainfall data in the sub-Mediterranean climate of southwest Slovenia. Hydrological Sciences Journal, 49, 869-877.

Renard, K.G.; Freimund, J.R. (1994). Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology, 157, 287-306.

Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. (1997). Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). USDA Agricultural Handbook No. 703, USDA, Washington, DC (1997) 384 pp.

Richardson, C.W.; Foster, G.R.; Wright, D.A. (1983). Estimation of Erosion Index from Daily Rainfall Amount. Transactions of the ASAE, 26, 153-160.

Roldan Soriano, M. (2006). El poder de la lluvia. Características de la precipitación y erosividad. Nueva formulación para la estimación de la erosividad. Aplicación al cálculo del factor R de la USLE. Organismo Autónomo de Parques Nacionales. Ministerio de Medio Ambiente. Madrid 125 pág.

Rosewell, C.J. (1986). Rainfall kinetic energy in Eastern Australia. Journal of Climate and Applied Meteorology, 25, 1695–1701

Salako, F.K.; Ghuman, B.S.; Lal, R. (1995). Rainfall erosivity in South-Central Nigeria. Soil Technology, 7, 279-290.

Sempere Torres, D.; Creutin, J.D.; Salles, C.; Delrieu, G. (1992). Quantification of soil detachment by raindrop impact: performances of classical formulae of kinetic energy in Mediterranean storms. Erosion and sediment transport monitoring programmes in river basins. En: Bogen, J.; Walling, D.E.; Day, T. (Eds). IAHS Publ. No. 210, 115-124.

Sempere Torres, D.; Porrà, J.M.; Creutin, J.D. (1994). A general formulation for raindrop size distribution. Journal of Applied Meteorology, 33, 1494-1502.

Seuffert, O.; Busche, D.; Löwe, P. (1999). Rainfall structure – rainfall erosivity: new concepts to solve old problems. Petermanns Geographische mitteilungen, 143, 475-490.

Teschl, F.; Randeu, W.L.; Schönhuber, M.; Teschl, R. (2008). Simulation of polarimetric radar variables in rain at S-, C- and X-band wavelengths. Advances in Geosciences, 16, 27-32.

Thornes, J. (ed.) 1990. Vegetation and Erosion, John Wiley and Sons.

Uijlenhoet, R.; Stricker, J. (1999). A consistent rainfall parametrization based on the exponential raindrop size distribution. Journal of Hydrology, 218, 101-127.

Uplinger, C.W. (1981) A new formula for raindrop terminal velocity. 20th Conference of Radar Meteorology. American Meteorology Society, Boston (USA), 389-391.

Usón, A.; Ramos, M.C. (2001). An improved rainfall erosivity index obtained from experimental intererill soil losses in soil with a Mediterraenan climate. Catena, 43, 293-305

Van Dijk, A.I.J.M.; Bruijnzeel, L.A.; Rosewell, C.J. (2002). Rainfall intensity-kinetic energy relationships: a critical literature appraisal. Journal of Hydrology, 261, 1-23.

Van Dijk, A., 2004. Ecohydrology: it’s all the game? Hydrological Processes, 18, 3683-3686.

Verstraeten, G.; Poesen, J.; Demarée, G.; Salles, C. (2006), Long-term (105 years) variability in rain erosivity as derived from 10-min rainfall depth data for Ukkel (Brussels, Belgium): Implications for assessing soil erosion rates, Journal of Geophysical Research, 111, D22109.

Vrieling, A.; Sterk, G.; de Jong, S.M. (2010). Satellite-based estimation of rainfall erosivity for Africa. Journal of Hydrology, 395, 235-241

Waldvogel, A. (1974). The No jump of raindrop spectra. Journal of Atmospheric Science, 31, 1069–1078.

Williams, J.R.; Jones, C.A.; Dyke, P.T. (1984). The EPIC model and ist application. Proceedings oft he International Symposium on Minimum Data Sets for Agrotechnology Transfer. March, 1983. (ICRISAT: Hyderabad, AP, India)

Wiesner, J. (1895). Beiträge zur Kenntnis des tropischen Regens. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften in Wien, mathematisch - naturwissenschaftliche Classe 104, 1397–1434.

Wischmeier, W.H.; Smith, D.D. (1958). Rainfall energy and its relationships to soil loss. Transactions of the American Geophysical Union, 39, 285-291

Wischmeier, W.H. (1962) Rainfall erosion potential. Agricultural engineering, 43, 215-225.

Wischmeier, W.H.; Smith, D.D. (1978). Predicting Rainfall Erosion Losses. Agriculture Handbook 537, USDA, Washington, DC.

Yu, B.; Hashim, G.M.; Eusof, Z. (2001). Estimating the R-factor with limited rainfall data: a case study from peninsular Malaysia. Journal of Soil and Water Conservation, 56, 101-105

Yu, B.; Rosewell, C.J. (1996a). An assessment of daily rainfall erosivity model for New South Wales. Australian Journal of Soil Research, 34, 139-152

Yu, B.; Rosewell, C.J. (1996b). A robust estimator of the R factor for the Universal Soil Loss Equation. Transactions of the ASAE, 39, 559-561

Yu, B.; Rosewell, C.J. (1996c). Rainfall erosivity estimation using daily rainfall amounts for South Australia. Australian Journal of Soil Research, 34, 721-733

Zanchi, C.; Torri, D. (1980). Evaluation of rainfall energy in Central Italy. En: De Boodt, M.; Gabriels, D. (Eds), Assessment of Erosion, Wiley, Chichester, pp. 133–142.

Descargas

Publicado

2013-06-05

Número

Sección

Artículos de Investigación