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N = 1 designs imply repeated registrations of the behaviour of the same 
experimental unit and the measurements obtained are often few due to time 
limitations, while they are also likely to be sequentially dependent. The 
analytical techniques needed to enhance statistical and clinical decision 
making have to deal with these problems. Different procedures for analysing 
data from single-case AB designs are discussed, presenting their main 
features and revising the results reported by previous studies. 
Randomization tests represent one of the statistical methods that seemed to 
perform well in terms of controlling false alarm rates. In the experimental 
part of the study a new simulation approach is used to test the performance 
of randomization tests and the results suggest that the technique is not 
always robust against the violation of the independence assumption. 
Moreover, sensitivity proved to be generally unacceptably low for series 
lengths equal to 30 and 40. Considering the evidence available, there does 
not seem to be an optimal technique for single-case data analysis.  

 
In psychological research there seem to be basically two ways of 

carrying out a study. The first one involves comparing groups before and 
after a treatment has been administered to one of them and is usually 
referred to as “group designs”. The second implies repeated measurements 
of the same individual or group taken as a unity under different conditions 
and it is generally labelled as “single-case designs”. N = 1 designs have 
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certain advantages as they allow studying the evolution of a unit in time and 
they permit addressing idiosyncrasy. Moreover, single-case designs are 
more feasible when the population of interest is small or disperse and 
groups cannot be easily formed.      

There are several ways of conducting a single-case study and the most 
commonly applied ones are presented in this paragraph. The simplest design 
structure is AB, which mirrors the natural therapy process with its 
evaluation and treatment periods. AB designs are indispensable when non-
reversion behaviours and/or treatments with persistent effects are studied 
(e.g. learning processes). AB designs are also needed when treatment 
interruption is not advised due to clinical or social reasons and when time 
limitations restrict therapy continuation. According to Rabin (1981), AB 
designs are really useful in clinical settings as they mirror the natural 
therapy process which involves an initial assessment period (i.e., baseline) 
followed by an intervention period (i.e., treatment phase). However this 
design is not sufficient to demonstrate experimental control (Wampold & 
Furlong, 1981a). Multiple-baseline designs are the ones which replicate 
with delay and AB structure in different behaviours, settings or 
experimental units. This designs controls history effects as the intervention 
is introduced in different time moments. Other designs controlling for 
extraneous variables are ABA and ABAB, with the second one being 
preferred from an ethical point of view as it terminates with a treatment 
phase. In those designs an effective treatment is supposed to produce a 
change in the reversive behaviour only during the B-phases, while in the 
second A-phase a return to baseline levels is expected.   

One of the features that distinguishes single-case data and makes their 
analysis controversial is serial dependence between the measurements of the 
same experimental unit. Recent surveys (e.g., Busk & Marascuilo, 1988; 
Matyas & Greenwood, 1991; 1997; Parker, 2006) have reported results 
suggesting that autocorrelation in usually present, in contrast with previous 
revision studies (Huitema, 1985; 1988). Several authors (Busk & 
Marascuilo, 1988; Sharpley & Alavosius, 1988; Suen, 1987; Suen & Ary, 
1987) concur that even low and statistically non-significant levels of 
autocorrelation can critically increase the risk of Type I error when classical 
statistical tests are employed. Consequently, and taking into account the 
violation of the independence assumption, in the following sections the 
parametric tests commonly used for group studies (e.g., ANOVA) will not 
be discussed.  
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The main aim of the first part of this article is to present and review 
several techniques proposed for analysing N = 1 data, focusing on their 
application and on the results from previous investigations. In the second 
part of the study we centre on randomization tests and apply a new data 
simulation approach in order to study the statistical properties of this 
technique and obtain evidence on whether its application is to be advised or 
not.    

 
Single-case data analysis 
One of the most frequently applied methods for analysing N = 1 data 

is visual inspection. In an AB design, visual analysis requires a stable 
baseline (i.e., low behaviour variability in phase A) or a behaviour that 
shows a trend in a direction contrary to the one expected to be produced by 
the intervention (e.g., increasing number of cigarettes smoked during phase 
A when the intervention’s objective is to decrease smoking). The treatment 
may produce different types of effects (see Figure 1): a) level change: 
abrupt increment or decrement in behaviour coinciding with intervention 
introduction; b) slope change: gradual increment or decrement; c) level and 
slope change. These effects can be produced with a delay (i.e., the 
behavioural change starts some time after the intervention has been 
initiated) or be decaying (i.e., return to baseline level during the treatment 
phase). Other characteristics that have to be taken into consideration are the 
variability within and across phases and the data overlap between phases 
(Ottenbacher, 1990). An effective treatment is supposed to produce rapid 
and maintained changes in behavioural rates, but delayed and extinguishing 
effects should not be overlooked. An advantage of visual inspection is that 
it does not require statistical expertise. Visual analysis has been proposed 
(Kratochwill & Levin, 1980) whenever large changes in level between 
phases are apparent and effect sizes somewhat greater than 2.0 appear to be 
sufficient (Matyas & Greenwood, 1990). With respect to that, it was 
claimed that this type of analysis, due to its relative insensitivity, ensures 
that only clinically relevant effects are detected (Parsonson & Baer, 1986). 
Empirical studies, however, have shown that treatment effect detection is 
affected by the presence of autocorrelation (Jones, Weinrott, & Vaught, 
1978) and variability in data, often increasing the false alarm rates (Matyas 
& Greenwood, 1990). An additional drawback of visual inspection resides 
in the fact that no formal decision rules are available (Wampold & Furlong, 
1981b).  
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Figure 1. Idealised examples of different types of treatment effects in an 
AB design.  

 
 
Another possibility for analysing N = 1 data is ARIMA 

(autoregressive integrated moving averages model), a procedure for 
interrupted time-series analysis proposed as a way of overcoming the 
autocorrelation problem (Crosbie, 1993; Kratochwill & Levin, 1980, 
Sharpley & Alavosius, 1988). An interrupted time series is a design in 
which one condition (e.g., baseline) is caused to cease by the introduction of 
another (e.g., treatment). The procedure described in Glass, Willson, and 
Gottman (1975, cited in Harrop & Velicer, 1985) involves the following 
steps: 1) Identify the model that fits empirical data – assess the pattern of 
autocorrelations and partial autocorrelations to determine the order of the 
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autoregressive (p), differencing (d), moving average (q) parameters. 2) 
Remove slope by differencing the data. 3) Determine the least squares 
estimates of the AR and MA parameters. 4) Remove autocorrelation using 
the parameters estimated in the previous step. 5) Apply the General Linear 
Model to determine if there is a level or slope change between the 
uncorrelated pre- and post-intervention scores. ARIMA is relatively more 
complex statistical technique and its application requires greater statistical 
expertise, while another limitation is the great number of observations 
required in order to accurately estimate the parameters (p, d, q) of the 
ARIMA model. Moreover, empirical results suggest that serial dependence 
may lead to inflation of Type I error rates, when positive, and to deflation, 
when negative (Greenwood & Matyas, 1990).  

N = 1 data can also be analysed by means of randomization tests, 
although some concerns have been raised regarding this question (Cox & 
Hinkley, 1974). This procedure constitutes a specific way to determine the 
statistical significance of a treatment effect directly from data (Edgington, 
1995), although no generalization to other experimental units is made due to 
the lack of random sampling (Edgington & Onghena, 2007). A 
randomization test is a permutation test which requires that some aspect of 
the design be randomized, but it does not involve any assumptions about 
population distributions, the nature of the data, or the kind of test statistic. 
In an applied setting a randomization test for an AB design could be used as 
described subsequently, although this is not the only possible random 
assignment procedure. 1) The researcher specifies his or her research 
hypothesis from which the null and the alternative hypotheses are derived. 
2) The statistical significance level is chosen. 3) A test statistic sensitive to 
the effects expected is selected. 4) Design’s length (n) is chosen and it is 
possible to set a minimum number of observations per each of the two 
phases. In the example in Figure 2 where n = 30 five measurement are 
preserved for phase A, and five more at the end of the series for phase B. 5) 
The starting point of the intervention is randomly chosen among all 
observation points and taking into account the restriction established in the 
previous step. For the data in Figure 2 there are 21 possible points for 
treatment introduction and the actually chosen intervention point is 13 
leading to 12 measurements for phase A and 18 for phase B. 6) The test 
statistic is calculated for the actual data bipartition obtaining the outcome. 
7) For each possible intervention point not chosen (i.e., 6, 7, …, 12, 14, …,  
25, 26) the test statistic is calculated once again and, therefore, the 
intervention point rather than data is the aspect being varied. 8) The 
reference set, an equivalent to a sampling distribution, is obtained using all 
values of the test statistic. The division of the data made to obtain that 
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reference set should match the random assignment procedure actually used 
(Edgington, 1980b). 9) The value of the outcome is located in the reference 
set. 10) The p-value is calculated as the number of test statistics equal to or 
greater than the outcome, for a behaviour expected to increase. The 
randomization test is valid if the empirical probability of rejecting a true 
null hypothesis is no greater than alpha, that is, the nominal significance 
level (Edgington, 1980b; Hayes, 1996). On theoretical grounds it has been 
claimed that the presence of serial dependence is insignificant for 
randomization tests, emphasising the following reasons: a) the effects of 
autocorrelation are the same for all data permutations in presence of random 
assignment (Wampold & Worsham, 1986); b) the reference distribution is 
generated internally from the data themselves (Kratochwill & Levin, 1980); 
c) phase means can be used as they are approximately independent (Levin, 
Marascuilo, & Hubert, 1978); d)  systematic trends in the data may affect 
the power of a statistical test, but have no effect on the ease of getting 
significant results when the null hypothesis is true (Edgington, 1980b). 
Empirical studies (e.g., Ferron, Foster-Johnson, & Kromrey, 2003; Ferron 
& Ware, 1995) concur with the latter statement showing that Type II errors 
are the main problem, while Type I errors are usually controlled.  

In contrast with these statements and findings, the notion of 
randomization tests as a panacea has been questioned by the assertion that 
all hypothesis-testing methods rely on the independence and/or 
exchangeability of the observations (Good, 1994; Gorman & Allison, 
1997). Empirical research has shown that significance probability values are 
underestimated for positive autocorrelated residuals, meaning that a 
researcher might be led to believe that a test is significant at the 0.05 level 
when in fact it is significant at a higher level (Gorman & Allison, 1997). 
There is also recent evidence for more-phased N = 1 designs that statistical 
significance of the outcome depends also on the specific data division 
(Manolov & Solanas, 2008; Sierra, Solanas, & Quera, 2005) and that Type I 
error rates are not always controlled. Consequently, the major part of the 
simulation study is focused on comparing the nominal and empirical Type I 
error rates for AB designs whose data presents different levels of 
autocorrelation (which violates the exchangeability assumption).   
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Figure 2. Randomization test applied to a n = 30 AB design. Actual 
intervention point: 13 (1st panel). Some other possible intervention 
points: 6 (2nd panel), 12 (3rd panel), 14 (4th panel), and 26 (5th panel). 
Data generation parameters: φ1 = 0.3 and d = 0.8 (the latter applied 
only to points 13 to 30).  
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Randomization tests simulation study 
In the present simulation study we applied the data-division-specific 

approach (Manolov & Solanas, 2008; Sierra, Solanas, & Quera, 2005) 
which implies that there can be a different reference set for each data 
division determined by the moment in which the intervention is introduced. 
The main objectives of the study were to compare the results with previous 
investigations in which no distinction is made between data divisions and so 
the same simulation parameters were employed. Our hypothesis was that 
the randomization test may prove to have inadmissible properties (high 
false alarm rates and/or high miss rates) for some intervention points in the 
case of AB designs.  

METHOD 
Following Onghena (1992), prior to data collection (in a simulation 

study it is rather “generation” than “collection”) the following aspects have 
to be chosen:  

a) The alternative hypothesis. Given that 
0 1: ,  : .A B A BH Hµ µ µ µ≥ <   

b) The level of significance: alpha was set to 0.05.  
c) The number of measurement times: AB designs with 30 and 40 

observation points were studied. Following Edgington (1980a), in both 
cases a minimum of five measurements per phase is ensured in order to rule 
out the possibility of having too few (or no) treatment times for one of the 
conditions. Therefore, the number of intervention points admissible for the 
n = 30 design is 21 – the intervention can start at any point between 6 and 
26, inclusive. The utilization of this design length is due to the fact that it 
was established (Edgington, 1980a) as the minimum necessary to obtain 
statistical significance beyond the 0.05 level. With the specified boundaries, 
for the n = 40 design there are 31 possible intervention points between 6 
and 36, inclusive.  

d) The random assignment procedure: in the simulation study the 
intervention point was systematically selected in order to obtain data-
division-specific information. Therefore, we studied the effect of 
autocorrelation on Type I and Type II error rates for each intervention point 
in a systematic manner. It is a simulation procedure which has no relation to 
applied settings where the researcher should chose randomly the 
intervention point in order to validly use a randomization tests.  
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e) The test statistic: two of them were used. The first is expressed as 
B AX X−  and represents the difference between phase means (hereinafter, 

MD), previously used in various studies (Ferron & Onghena, 1996; Ferron 
& Ware, 1995). The second was Student’s t (hereinafter, ST), calculated 
according to ( ) 2 2/ / /B A B AX X s n s n− + . Its inclusion is based on the 
importance that data variability seems to have when treatment effects 
should be detected. Previous studies (Sierra, Quera, & Solanas, 2000) have 
shown that taking variance into account is helpful when differences in mean 
level are evaluated.  

 
Data generation 
The research was conducted by developing FORTRAN 90 programs 

for generating data and performing further calculations. The first step was 
carried out according to exactly the same formula used in the studies with 
which a comparison is pretended (e.g., Ferron & Onghena, 1996; Ferron & 
Ware, 1995): yt = φ1* yt–1 + εt + d. In this expression yt represents the data 
point corresponding to measurement time t, yt–1 is the previous data point, 
φ1 is the value of the lag-one autocorrelation coefficient, εt is the 
independent error following a normal distribution with mean zero and 
standard deviation equal to one, and d is the effect size.  

The values of the error term were generated with the aid of NAG fl90 
mathematical-statistical libraries (specifically, the external subroutines 
nag_rand_seed_set and nag_rand_normal).  

The values chosen for the level of serial dependence (–0.6, –0.3, 0.0, 
0.3 and 0.6) are commonly used in simulations (Ferron & Onghena, 1996; 
Ferron & Ware, 1995; Greenwood & Matyas, 1990) and cover the range of 
autocorrelation values presented in Parker (2006) – median negative 
autocorrelation of −0.2 and median positive autocorrelation of 0.42.  

Following Ferron and Sentovich (2002), effect size was defined as the 
difference between phase means divided by the standard deviation of the 
error term in the baseline phase. Cohen (1992) has operationally defined 
small, medium and large effect size (when the difference between 
independent means is calculated) as 0.20, 0.50, and 0.80, respectively. The 
present study focuses on these values and complements them with others 
(1.10, 1.40, 1.70 and 2.00) used in previous studies (e.g., Ferron & 
Onghena, 1996; Ferron & Sentovich, 2002). In the Type I error rates study 
d was set to zero for both phases, while for the Type II error rates study the 
moment of introducing a non-zero value of d depended on the actual data 
bipartition (i.e., the actually chosen intervention point). For instance, the 
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Figure 2 data was generated by selecting 13 as intervention point and 
afterwards adding d to data points 13 to 30. Summing the effect size to all 
phase B measurements implies that an effective treatment is one that 
produces an immediate increment in the behaviour of interest. 

 The 20 numbers prior to the design’s observation points were 
discarded in order to reduce artificial effects (i.e., to diminish the effect of 
anomalous initial values) (Greenwood & Matyas, 1990).   

 
Simulation 
The simulation for the study of Type I error rates consisted of 100,000 

iterations for each combination of an intervention point and an 
autocorrelation coefficient value. For the power study, the same number of 
iterations was made for each combination of intervention point, 
autocorrelation coefficient and effect size values. The use of 100,000 
iterations seems to ensure sufficient accuracy for the estimation of the 
statistical properties. This number of repetitions is greater than the one used 
in many previous studies (1,000 in Ferron & Ware, 1995; 5,000 in Ferron, 
Foster-Johnson, & Kromrey, 2003; 10,000 in Ferron & Onghena, 1996; 
10,000 in Ferron & Sentovich, 2002; 40,000 in Sierra, Solanas, & Quera, 
2005).  

After data have been generated for different levels of φ1 and d in 
accordance with the intervention point selected, the following steps took 
place: 1) calculation of the test statistic for the actual data bipartition, 
obtaining the outcome; 2) calculation of the test statistic for each data 
division; 3) construction of the reference set sorting the test statistics’ 
values obtained for all possible intervention points; and 4) ranking the 
outcome, according to its position in the reference set.  

 
Analysis 
The basic data for the Type I error rates study were the proportions 

(out of 100,000 iterations) of each rank assigned to the outcome. Special 
attention was paid to extreme ranks and in order to obtain more stable 
estimates we averaged the relative frequencies of ranks 1 and 21, ranks 2 
and 20, etc. The number of extreme ranks whose cumulative proportion 
reached values close to 0.05 (nominal alpha) without overcoming it were 
labelled as “critical” for null hypothesis rejection. In order to assess the 
importance of serial dependence in data, we compared the cumulative 
proportions of the critical ranks when φ = 0.0 (i.e., the cumulative 
proportion for independent data, hereinafter, CPID) with the cumulative 
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proportions of the same number of ranks when φ ≠ 0.0. This comparison 
was carried out for each combination of data division and test statistic. The 
similarity between those proportions was evaluated by means of Bradley’s 
(1978, cited in Robey & Barcikowski, 1992) stringent criterion: if the 
cumulative proportions for φ = −0.6, −0.3, 0.3, and 0.6 all fell within the 
interval CPID ± 0.1 * CPID, then the effect of autocorrelation was judged to 
be insignificant for the particular combination of intervention point and test 
statistic. Power analysis was performed only for those robust cases and it 
implied another step that consisted in computing the proportion of critical 
ranks assigned to the outcome for all combinations of intervention point, 
degree of serial dependence and effect size.  

RESULTS 
In this section, partial results will be presented, although more 

detailed information is available from the authors on request.  
In the n = 30 design deviations from the robustness intervals were 

observed for intervention points 6, 7, 8, 23, 24, 25, and 26 both for MD 
(Figure 3) and ST (Figure 4). Those figures illustrate the underestimation 
and overestimation of Type I error rates occurring for the most extreme 
intervention points under autocorrelation. They also show how ranks’ 
proportions vary across data divisions even in absence of serial dependence. 
In the n = 40 design with 31 possible intervention points and α = 0.05, 
autocorrelation results in a not robust test for intervention points 6, 7, 8, 9, 
33, 34, 35, and 36. For both design lengths this means that nominal and 
empirical Type I errors did not match for the aforementioned intervention 
points and there was an increased probability of false alarm rates or 
excessive conservativeness for positive and negative serial dependence, 
respectively. 

For the n = 30 design, power for effect sizes of 0.2 and 0.5 (defined as 
“small” and “medium” by Cohen, 1992) is low, not greater than 0.08 and 
0.14, respectively. Even when effect size is 2.0, the probability of rejecting 
a false null hypothesis is smaller than 0.63. For the extreme intervention 
points (6, 7, 8, 24, 25, and 26) the test has no power at the 0.05 level. Table 
2 shows the power of the randomization test averaged across all data 
divisions including the one for it has zero power. Marascuilo and Busk 
(1988) suggest that if an α = 0.05 decision rule cannot be generated, one can 
place the most extreme value of the test statistic (or the largest rank, in the 
case of the procedure studied here) in the critical region and reject the null 
hypothesis when that value (or rank) is obtained. Following this procedure, 
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power estimates greater than 0.80 can be obtained for intervention points 6 
and 26, but the probability of Type I error is > 10%. For the n = 40 design 
the power estimates are lower than 0.1 and 0.2 for effect sizes of 0.2 and 
0.5, respectively. When an effect size of 2.0 is present in data, only for a 
few combinations of intervention point, autocorrelation and test statistic 
does the power reach acceptable values of 0.8 or higher (Cohen, 1992). 
Positive autocorrelation of 0.6 has a discernible reducing effect on power 
across all intervention points. Greater power estimates were obtained for n 
= 40 than for n = 30, but 0.6 autocorrelation has the same effect of 
decreasing it. Ferron and Onghena (1996) comment that positive 
autocorrelation has a differential effect according to the type of design, 
specifically decreasing power where a random intervention point is used. 
According to these authors, in an AB design positive autocorrelation can 
mask the transition from one phase to another, as our results have also 
verified.  
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Figure 3. Mean proportion of ranks 1 and 21 assigned to the outcome 
computed through Mean Difference for each combination of admissible 
intervention point and level of autocorrelation. The deviations from the 
boundaries constructed about the φ1=0.0 proportion indicate lack of 
robustness against the violation of the independence assumption. 
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Figure 4. Mean proportion of ranks 1 and 21 assigned to the outcome 
computed through Student’s t for each combination of admissible 
intervention point and level of autocorrelation. The deviations from the 
boundaries constructed about the φ1 = 0.0 proportion indicate lack of 
robustness against the violation of the independence assumption.  
 

DISCUSSION 
Even for independent data series the probability of committing Type I 

errors clearly varies across the admissible data divisions. When φ1 = 0.0, for 
both design lengths the Type I error rates are greater than 5% for the 
extreme intervention points, and the correspondence between nominal alpha 
and empirical probability of rejecting a true null hypothesis is important for 
preventing from statistical decision mistakes. Moreover, the effect of serial 
dependence (φ1 ≠ 0.0) is greater for the data divisions defined by those 
intervention points. A possible explanation resides in the fact the variances 
for phases with rather different sizes (i.e., short A phase and long B phase, 
or vice versa) are more unequal. These results do not concur with previous 
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findings (Ferron & Ware, 1995) and suggest that randomization test do not 
always control the Type I error rates and so their liberality cannot be ruled 
out.   

 
 

Table 1. Mean power for all intervention points as a function of the 
autocorrelation level (φ1) and the effect size (d) values; α = 0.05 and n = 
30. Power is equal to zero for the aforementioned nominal alpha for 
intervention points 6, 7, 8, 24, 25, and 26. 
 

φ1 Test 
statistic  

d = 0.0 d = 0.2 d = 0.5 d = 0.8 d = 1.1 d = 1.4 d = 1.7 d = 2.0 

-0.6 MD 0.0214 0.0330 0.0592 0.0954 0.1406 0.1922 0.2459 0.3193 

 ST 0.0261 0.0421 0.0783 0.1281 0.1880 0.2526 0.3148 0.3983 

-0.3 MD 0.0217 0.0350 0.0647 0.1069 0.1599 0.2200 0.2828 0.3456 

 ST 0.0260 0.0439 0.0845 0.1417 0.2111 0.2844 0.3562 0.4227 

0.0 MD 0.0221 0.0359 0.0668 0.1109 0.1675 0.2304 0.2972 0.3613 

 ST 0.0260 0.0445 0.0865 0.1466 0.2195 0.2972 0.3741 0.4432 

0.3 MD 0.0233 0.0356 0.0655 0.1072 0.1588 0.2153 0.2728 0.3275 

 ST 0.0258 0.0438 0.0852 0.1423 0.2100 0.2801 0.3480 0.4080 

0.6 MD 0.0217 0.0336 0.0575 0.0875 0.1193 0.1502 0.1762 0.1964 

 ST 0.0252 0.0418 0.0759 0.1179 0.1607 0.1972 0.2231 0.2381 

 
 
 
As far as sensitivity is concerned, for the n = 30 AB design a 

comparison with Ferron and Ware’s (1995) results reveals a similar pattern 
of low power for d = 1.4. Our results indicate that even more evident effect 
sizes do not guarantee relatively small Type II error rates. Nonetheless, 
some additional comments on the effect sizes chosen for the power study 
are needed. Cohen (1992) sought to ensure that the ‘medium’ effect size 
represented an effect likely to be detectable by means of a careful visual 
analysis. However, Knapp (1983) found that visual judges show high 
agreement only when the intervention effect is greater than 2.0, a value that 
is quite different from Cohen’s medium effect size of 0.5. Furthermore, a 
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survey by Matyas and Greenwood (1985, cited in Matyas & Greenwood, 
1990), performed on articles extracted from the Journal of Applied 
Behavior Analysis, showed that the median effect size of AB panels with n 
≥ 10 was 9.2, with percentile 25 equal to 4.9 and percentile 75 equal to 17.1. 
This comment is necessary to avoid conclusions being drawn on the power 
for medium effect sizes, as the concept ‘medium’ hardly represents any 
particular effect size. It might be also important to consider if Cohen’s 
guidelines are appropriate for single-case designs.   

The practical implication of these results is to show that, in presence 
of autocorrelation, false alarms and miss rates can be both too high when 
randomization tests are used to make decisions about the treatment applied 
to an experimental unit. The application of this statistical technique to AB 
designs is also limited by the high number of observations (30) required to 
obtain a p-value of 0.05 and by the fact that random selection of the 
moment in which to initiate intervention may not be feasible. While the first 
problem can be dealt with using more complex design structures (e.g., 
ABAB) that allow a greater number of admissible random assignments with 
shorter data series, the second one is inherent to randomization tests. Even 
when both these conditions are met the performance of the randomization 
test based on random selection of the intervention point is not satisfactory. 
Applied behavioural researchers should note that the results of our study 
recommend analysing data obtained from AB designs with the presented 
randomization test only when large effects are aimed to be detected, as 
smaller ones (i.e., effect sizes < 2.0) can be missed. Comparable 
performance is expected from visual inspection, but it constitutes a rather 
simpler technique, while software for performing randomization tests is still 
not widely available. Therefore, given the problems presented by techniques 
discussed in the first part of the article, the most parsimonious one ought to 
be recommended until a better solution is found for enhancing statistical 
decision making and facilitating applied researchers’ labour.   

The conclusions of the present study are restricted by the 
experimental conditions explored and its generalization to another set is not 
suggested. Only one type of design (AB) and only two design lengths (30 
and 40) are studied. Moreover, the data simulated did not contain trends. 
However, these limitations are common to most studies focusing on similar 
tests (e.g., Ferron & Sentovich, 2002; Ferron & Ware, 1995).  

Future randomization test simulation studies following the data-
division-specific approach can be conducted for single-case designs 
following ABA, BAB, ABAB structures in which the points of change are 
randomly determined. Another possible line of research could focus on 
exploring rules that could guide visual analysts in their task.   
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RESUMEN 
Problemas en las pruebas de aleatorización para diseños AB. Los 
diseños de caso único implican registrar la conducta de la misma unidad 
experimental. Las mediciones obtenidas suelen ser pocas debido a los costes 
temporales y también es probable que presenten dependencia serial. Estos 
problemas tienen que ser superados por las técnicas analíticas necesarias 
para mejorar la toma de decisiones estadísticas y clínicas. En la primera 
parte del artículo se discuten diferentes procedimientos para el análisis de 
diseños AB, presentando sus características y revisando resultados de 
estudios anteriores. Las pruebas de aleatorización son unos de los métodos 
estadísticos que se consideran apropiados debido a que parecen controlar las 
tasas de error Tipo I. En la parte experimental del artículo se utiliza una 
nueva manera de simular con el objetivo de analizar las propiedades 
estadísticas de las pruebas de aleatorización. Los resultados sugieren que la 
técnica no es siempre robusta contra la violación del supuesto de 
independencia y además presenta tasas de error Tipo II inaceptables. 
Teniendo en cuenta las evidencias disponibles, no parece existir una técnica 
óptima para el análisis de datos de N = 1.     

REFERENCES 
Busk, P. L., & Marascuilo, L. A. (1988). Autocorrelation in single-subject research: A 

counterargument to the myth of no autocorrelation. Behavioral Assessment, 10, 229-
242.  

Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155-159.   
Cox, D. R., & Hinkley, D. V. (1974). Theoretical statistics. London: Chapman & Hall. 
Crosbie, J. (1993). Interrupted time-series analysis with brief single-subject data. Journal 

of Consulting and Clinical Psychology, 61, 966-974.  
Edgington, E. S. (1980a). Random assignment and statistical tests for one-subject 

experiments. Behavioral Assessment, 2, 19-28.  
Edgington, E. S. (1980b). Validity of randomization tests for one-subject experiments. 

Journal of Educational Statistics, 5, 235-251.  
Edgington, E. S. (1995). Randomization tests (3rd ed.). New York: Marcel Dekker.    
Edgington, E. S., & Onghena, P. (2007). Randomization tests (4th ed.). London: Chapman 

& Hall/CRC.    
Ferron, J., Foster-Johnson, L., & Kromrey, J. D. (2003). The functioning of single-case 

randomization tests with and without random assignment. The Journal of 
Experimental Education, 71, 267-288. 

Ferron, J., & Onghena, P. (1996). The power of randomization tests for single-case phase 
designs. The Journal of Experimental Education, 64, 231-239. 

Ferron, J., & Sentovich, C. (2002). Statistical power of randomization tests used with 
multiple-baseline designs. The Journal of Experimental Education, 70, 165-178.  

Ferron, J., & Ware, W. (1995). Analyzing single-case data: The power of randomization 
tests. The Journal of Experimental Education, 63, 167-178. 

Good, P. (1994). Permutation tests. A practical guide to resampling methods for testing 
hypotheses. New York: Springer-Verlag. 



AB designs analysis 153 

Gorman, B. S., & Allison, D. B. (1997). Statistical alternatives for single-case designs. In 
R. D. Franklin, D. B. Allison, & B. S. Gorman (Eds.), Design and analysis of 
single-case research (pp. 159-214). Mahwah, NJ: Erlbaum.  

Greenwood, K. M., & Matyas, T. A. (1990). Problems with application of interrupted time 
series analysis for brief single-subject data. Behavioral Assessment, 12, 355-370.  

Harrop, J. W., & Velicer, W. F. (1985). A comparison of alternative approaches to the 
analysis of interrupted time-series. Multivariate Behavioral Research, 20, 27-44.   

Hayes, A. F. (1996). Permutation test is not distribution-free: Testing H0: ρ = 0. 
Psychological Methods, 1, 184-198. 

Huitema, B. E. (1985). Autocorrelation in behavior analysis: A myth. Behavioral 
Assessment, 7, 107-118.   

Huitema, B. E. (1988). Autocorrelation: 10 years of confusion. Behavioral Assessment, 10, 
253-294.  

Jones, R. R., Weinrott, M. R., & Vaught, R. S. (1978). Effects of serial dependence on the 
agreement between visual and statistical inference. Journal of Applied Behavior 
Analysis, 11, 277-283. 

Knapp. T. J. (1983). Behavioral analysts’ visual appraisal of behavior change in graphic 
display. Behavioral Assessment, 5, 155-164. 

Kratochwill, T. R., & Levin, J. R. (1980). On the applicability of various data analysis 
procedures to the simultaneous and alternating treatment designs in behavior 
therapy research. Behavioral Assessment, 2, 353-360.  

Levin, J. R., Marascuilo, L. A., & Hubert, L. J. (1978). N = Nonparametric randomization 
tests. In T. R. Kratochwill (Ed.), Single-subject research: Strategies for evaluating 
change (pp. 167-196). New York: Academic Press.   

Manolov, R., & Solanas, A. (2008). Randomization tests for ABAB designs: Comparing 
data-division-specific and common distributions. Psicothema, 20, 291-297.  

Marascuilo, L. A., & Busk, P. L. (1988). Combining statistics for multiple-baseline AB and 
replicated ABAB designs across subjects. Behavioral Assessment, 10, 1-28. 

Matyas, T. A., & Greenwood, K. M. (1990). Visual analysis for single-case time series: 
effects of variability, serial dependence, and magnitude of intervention effects. 
Journal of Applied Behavior Analysis, 23, 341-351.   

Matyas, T. A., & Greenwood, K. M. (1991). Problems in the estimation of autocorrelation 
in brief time series and some implications for behavioral data. Behavioral 
Assessment, 13, 137-157.   

Matyas, T. A., & Greenwood, K. M. (1997). Serial dependence in single-case time series. 
In R. D. Franklin, D. B. Allison, & B. S. Gorman (Eds.), Design and analysis of 
single-case research (pp. 215-243). Mahwah, NJ: Lawrence Erlbaum Associates.  

Onghena, P. (1992). Randomization tests for extensions and variations of ABAB single-
case experimental designs: A rejoinder. Behavioral Assessment, 14, 153-171. 

Ottenbacher, K. J. (1990). Visual inspection of single-subject data: An empirical analysis. 
Mental Retardation, 28, 283-290. 

Parker, R. I. (2006). Increased reliability for single-case research results: Is bootstrap the 
answer? Behavior Therapy, 37, 326-338.  

Parsonson, B. S., & Baer, D. M. (1986). The graphic analysis of data. In A. Poling & R. W. 
Fuqua (Eds.), Research methods in applied behavior analysis: Issues and advances 
(pp. 157-186). New York: Plenum Press.  

Rabin, C. (1981). The single-case design in family therapy evaluation research. Family 
Process, 20, 351-366. 



 R. Manolov  &  A. Solanas 154 

Robey, R. R., & Barcikowski, R. S. (1992). Type I error and the number of iterations in 
Monte Carlo studies of robustness. British Journal of Mathematical and Statistical 
Psychology, 45, 283-288. 

Sharpley, C. F., & Alavosius, M. P. (1988). Autocorrelation in behavior data: An 
alternative perspective. Behavior Assessment, 10, 243-251.   

Sierra, V., Quera, V., & Solanas, A. (2000). Autocorrelation effect on Type I error rate of 
Revusky’s Rn test: A Monte Carlo study. Psicológica, 21, 91-114. 

Sierra, V., Solanas, A., & Quera, V. (2005). Randomization tests for systematic single-case 
designs are not always appropriate. The Journal of Experimental Education, 73, 
140-160. 

Suen, H. K. (1987). On the epistemology of autocorrelation in applied behavior analysis. 
Behavioral Assessment, 9, 113-124. 

Suen, H. K., & Ary, D. (1987). Autocorrelation in behavior analysis: Myth or reality? 
Behavioral Assessment, 9, 150-130.  

Wampold, B. E., & Furlong, M. J. (1981a). Randomization tests in single-subject designs: 
Illustrative examples. Journal of Behavioral Assessment, 3, 329-341.  

Wampold, B. E., & Furlong, M. J. (1981b). The heuristics of visual inference. Behavioral 
Assessment, 3, 79-92.  

Wampold, B. E., & Worsham, N. L. (1986). Randomization tests for multiple-baseline 
designs. Behavioral Assessment, 8, 135-143. 

 

(Manuscript received: 6 September 2007; accepted: 28 February 2008) 

 


