Influence of the biomechanical variables of the gait cycle in running economy. [Influencia de variables biomecánicas del ciclo de paso en la economía de carrera].

Authors

  • Jordan Santos-Concejero University of Cape Town
  • Cristina Granados University of the Basque Country UPV/EHU
  • Jon Irazusta University of the Basque Country UPV/EHU
  • Iraia Bidaurrazaga-Letona University of the Basque Country UPV/EHU
  • Jon Zabala-Lili University of the Basque Country UPV/EHU
  • Nicholas Tam University of Cape Town
  • Susana M. Gil University of the Basque Country UPV/EHU

Keywords:

ground contact, stride angle, swing time, stride length, stride frequency, Tiempo de contacto, ángulo de zancada, tiempo de vuelo, longitud de zancada, frecuencia de zancada.

Abstract

The aim of this study was to investigate the relationships between biomechanical variables and running economy (RE). Eleven recreational (RR) and 14 well-trained runners (WT) completed 4 min stages on a treadmill at different speeds. During the test, biomechanical variables such as ground contact time (tc), swing time (tsw), stride length, frequency and angle and the length of the different subphases of ground contact were calculated using an optical measurement system. VO2 was measured in order to calculate RE. The WT runners were more economical than the RR at all speeds and presented lower tc, higher tsw, longer strides, lower stride frequencies and higher stride angles (P<0.05). Similarly, the WT runners experienced a later propulsion subphase than the RR runners (P<0.05). RE was positively related to tc, stride frequency and 10-km race pace, whereas it was negatively related to tsw, stride length, stride angle and the propulsive subphase. Our results suggest that running patterns characterized by longer stride lengths and higher stride angles, lower stride frequencies and tc, higher tsw and later propulsion suphases may enable an efficient energy use per stride.

Resumen

El objetivo de este estudio fue el investigar las relaciones entre diferentes variables biomecánicas y la economía de carrera (RE). Once atletas populares (RR) y 14 atletas altamente entrenados (WT) completaron estadios de 4 min en tapiz rodante a diferentes velocidades. Durante el test, el tiempo de contacto (tc) y de vuelo (tsw), la longitud, frecuencia y ángulo de zancada y la duración de las diferentes sub-fases del tiempo de contacto se calcularon usando un sistema óptico. Se midió el VO2 para calcular la RE. Los atletas WT fueron más económicos que los RR y presentaron menores tc, mayores tsw, zancadas más largas, frecuencias más bajas y ángulos mayores (P<0.05). Además, los atletas WT experimentaron la sub-fase propulsiva más tarde que los RR (P<0.05). La RE estuvo positivamente relacionada con el tc, la frecuencia de zancada y el ritmo de 10 km, mientras que estuvo negativamente relacionada con el tsw, longitud y ángulo de zancada y la sub-fase propulsiva. Estos resultados sugieren que una biomecánica caracterizada por zancadas más largas, ángulos de zancada y tsw mayores, menores frecuencias y tc, y sub-fases propulsivas más tardías pueden favorecer un uso energético más eficiente.

http://dx.doi.org/10.5232/ricyde2014.03601

---------------------------------------------------------------------

References/referencias

Anderson, T. (1996). Biomechanics and running economy. Sports Medicine, 22, 76-89.
http://dx.doi.org/10.2165/00007256-199622020-00003

Bergh, U.; Sjödin, B.; Forsberg, A., & Svedenhag, J. (1991). The relationship between body mass and oxygen uptake during running in humans. Medicine & Science in Sports & Exercise, 23, 205-211.
http://dx.doi.org/10.1249/00005768-199102000-00010

Bosco, C.; Montanari, G.; Ribacchi, R.; Giovenali, P.; Latteri, F.; Lachelli, G.; Faina, M.; Colli, R.; Dal Monte, A., & La Rosa, M. (1987). Relationship between the efficiency of muscular work during jumping and the energetic. European Journal of Applied Physiology and Occupational Physiology, 56, 138-143.
http://dx.doi.org/10.1007/BF00640636

Cavanagh, P.R., & Williams, K.R. (1982). The effect of stride length variation on oxygen uptake during distance running. Medicine & Science in Sports & Exercise, 14, 30-35.
http://dx.doi.org/10.1249/00005768-198201000-00006

Chapman, R.F.; Laymon, A.S.; Wilhite, D.P.; McKenzie, J.M.; Tanner, D.A., & Stager, J.M. (2012). Ground contact time as an indicator of metabolic cost in elite distance runners. Medicine & Science in Sports & Exercise, 4, 917-92.
http://dx.doi.org/10.1249/MSS.0b013e3182400520

Cheng, B.; Kuipers, H.; Snyder, A.C.; Keizer, H.A.; Jeukendrup, A., & Hesselink, M. (1992). A new approach for the determination of ventilatory and lactate thresholds. International Journal of Sports Medicine, 13, 518-522.
http://dx.doi.org/10.1055/s-2007-1021309

Chumanov, E.S.; Heiderscheit, B.C., & Thelen, D.G. (2011). Hamstring musculotendon dynamics during stance and swing phases of high-speed running. Medicine & Science in Sports & Exercise, 43, 525-532.
http://dx.doi.org/10.1249/MSS.0b013e3181f23fe8

Debaere, S.; Jonkers, I., & Delecluse, C. (2013). The contribution of step characteristics to sprint running performance in high-level male and female athletes. Journal of Strength & Conditioning Research, 27, 116-124.
http://dx.doi.org/10.1519/JSC.0b013e31825183ef

Di Pampero, P.E.; Atchou, G.; Brückner, J.C., & Moia, C. (1986). The energetics of endurance running. European Journal of Applied Physiology and Occupational Physiology, 55, 259-266.
http://dx.doi.org/10.1007/BF02343797

Duggan, S.A., & Bhat, K.P. (2005). Biomechanics and Analysis of Running Gait. Physical Medicine & Rehabilitation Clinics of North America, 16, 603–621.
http://dx.doi.org/10.1016/j.pmr.2005.02.007

Foster, C., & Lucia, A. (2007). Running economy: the forgotten factor in elite performance. Sports Medicine, 37, 316-319.
http://dx.doi.org/10.2165/00007256-200737040-00011

Helgerud, J.; Engen, L.C.; Wisloff, U., & Hoff, J. (2001). Aerobic endurance training improves soccer performance. Medicine & Science in Sports & Exercise, 33, 1925-1931.
http://dx.doi.org/10.1097/00005768-200111000-00019

Helgerud, J.; Støren, O., & Hoff, J. (2010). Are there differences in running economy at different speeds for well-trained distance runners? European Journal of Applied Physiology, 108, 1099-1105.
http://dx.doi.org/10.1007/s00421-009-1218-z

Hopkins, W.G.; Marshall, S.W.; Batterham, A.M., & Hanin J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41, 3-13.
http://dx.doi.org/10.1249/MSS.0b013e31818cb278

Karp, J.R. (2010). Strength Training For Distance Running: A Scientific Perspective. Strength and Conditioning Journal, 32, 83‐86.
http://dx.doi.org/10.1519/SSC.0b013e3181df195b

Krahenbuhl, G.S., & Pangrazi, R.P. (1983). Characteristics associated with running performance in young boys. Medicine & Science in Sports & Exercise, 15, 486-490.
http://dx.doi.org/10.1249/00005768-198315060-00008

Kram, R., & Taylor, C.R. (1990). Energetics of running: a new perspective. Nature, 346, 265-267.
http://dx.doi.org/10.1038/346265a0

Kyröläinen, H.; Belli, A., & Komi, P.V. (2001). Biomechanical factors affecting running economy. Medicine & Science in Sports & Exercise, 33, 1330-1337.
http://dx.doi.org/10.1097/00005768-200108000-00014

Levine, B.D. (2008). VO2max: what do we know, and what do we still need to know? Journal of Physiology, 586, 25-34.
http://dx.doi.org/10.1113/jphysiol.2007.147629

Lucia, A.; Esteve-Lanao, J.; Oliván, J.; Gómez-Gallego, F.; San Juan, A.F.; Santiago, C.; Pérez, M.; Chamorro-Viña, C., & Foster, C. (2006). Physiological characteristics of the best Eritrean runners-exceptional running economy. Applied Physiology, Nutrition and Metabolism, 31, 530-540.
http://dx.doi.org/10.1139/h06-029

Maldonado, S.; Mujika, I., & Padilla, S. (2002). Influence of body mass and height on the energy cost of running in highly trained middle- and long-distance runners. International Journal of Sports Medicine, 23, 268-272.
http://dx.doi.org/10.1055/s-2002-29083

Mayhew, J.L. (1997). Oxygen cost and energy expenditure of running in trained runners. British Journal of Sports Medicine, 11, 116–121. 
http://dx.doi.org/10.1136/bjsm.11.3.116

Novacheck, T.F. (1998). Review paper: the biomechanics of running. Gait & Posture, 7, 77–95.
http://dx.doi.org/10.1016/S0966-6362(97)00038-6

Nummela, A.; Keränen, T., & Mikkelsson, L. (2007). Factors related to top running speed and economy. International Journal of Sports Medicine, 28, 655–661.
http://dx.doi.org/10.1055/s-2007-964896

Pate, R.R.; Macera, C.A.; Bailey, S.P.; Bartoli, W.P., & Powell, K.E. (1992). Physiological, anthropometric, and training correlates of running economy. Medicine & Science in Sports & Exercise, 24, 1128-1133.
http://dx.doi.org/10.1249/00005768-199210000-00010

Saunders, P.U.; Pyne, D.B.; Telford, R.D., & Hawley, J.A. (2004). Factors affecting running economy in trained distance runners. Sports Medicine, 34, 456-485.
http://dx.doi.org/10.2165/00007256-200434070-00005

Yoshida, T. (1984). Effect of exercise duration during incremental exercise on the determination of anaerobic threshold and the onset of blood lactate accumulation. European Journal of Applied Physiology & Occupational Physiology, 53, 196-199.
http://dx.doi.org/10.1007/BF00776589

 

Published

2014-04-01

Issue

Section

Artículos/articles