The effect of repeated sprint ability on physiological and physical profiles of young basketball players. [El efecto de esprines repetidos en los perfiles fisiológicos y físicos de jóvenes jugadores de baloncesto].
Palabras clave:
sprints, muscle power, work decrement, fatigue, esprints, potencia muscular, decrimento del trabajo, fatiga.Resumen
The purpose of this study was to describe the dynamics of a repeated sprint ability (RSA) cycling protocol in young elite basketball players. Twenty-two elite male basketball players (aged 18.3±0.6 years; training years 9.1±1.3 years) performed 3 bouts of a repeated sprint ability (RSA) protocols, consisting of 5 x 6-s cycling sprints with a 24-s rest interval between sprints. The work decrement during the first trial was high (14.1±4.8%) and after 5-minute rest did not change significantly. The total work decreased by 5.5% in the second work interval and by 2.9% in the third interval. During the 5-minute passive rest, young basketball players’ peak power recovered about 90% of the initial levels. It is suggested that rest intervals are sufficient to continue the game with adequate performance potential. A reduction in work decrement, while maintaining the capacity of all sprints, is needed to achieve a higher repeated sprint ability.
Resumen
El propósito de este estudio fue describir la dinámica de un protocolo de esprines repetidos en jóvenes jugadores de baloncesto. Veintidós jugadores de baloncesto masculino (con edades comprendidas entre 18,3 ± 0,6 años, años de entrenamiento de 9,1 ± 1,3 años) realizaron 3 series de un protocolo de esprín repetido, consistiendo en 5 esprines en cicloergometro de 6-s con de descanso de 24-s entre esprints. La disminución del trabajo durante la primera serie fue alta (14.1 ± 4.8%) y después de 5 minutos de descanso no cambió significativamente. El trabajo total disminuyó en un 5.5% en la segunda serie y en un 2.9% en la tercera. Durante el descanso pasivo de 5 minutos, la potencia máxima de los jóvenes jugadores de baloncesto recuperó aproximadamente hasta un 90% de los niveles iniciales. Se sugiere que los intervalos de descanso sean suficientes para continuar el juego con un potencial de rendimiento adecuado. Se necesita una reducción en el decremento del trabajo, mientras se mantiene la capacidad de todos los esprines, para optimizar esta capacidad de rendimiento tan importante en baloncesto.
https://doi.org/10.5232/ricyde2018.05402
References/referencias
Armstrong, N., Barker, A. R., & McManus, A. M. (2015). Muscle metabolism changes with age and maturation: How do they relate to youth sport performance? British Journal of Sports Medicine, 49(13), 860-4.
https://doi.org/10.1136/bjsports-2014-094491
Attene, G.; Pizzolato, F.; Calcagno, G.; Ibba, G., Pinna, M.; Salernitano, G., & Padulo, J. (2014). Sprint vs. intermittent training in young female basketball players. The Journal of Sports Medicine and Physical Fitness, 54(2), 154-161.
Bar-Or, O. (1987). The Wingate anaerobic test, an update on methodology, reliability and validity. Sports Medicine, 4(6), 381-94.
Balsom, P. D.; Seger, J. Y.; Sjödin, B., & Ekblom, B. (1992). Maximal-intensity intermittent exercise: Effect of recovery duration. International Journal of Sports Medicine, 13(7), 528–533.
https://doi.org/10.1055/s-2007-1021311
Ben Abdelkrim, N.; El Fazaa, S., & El Ati, J. (2007). Time-motion analysis and physiological data of elite under-19-year-old basketball players during competition. British Journal of Sports Medicine, 41(2), 69-75; discussion 75.
https://doi.org/10.1136/bjsm.2006.032318
Billaut, F., & Basset, F. A. (2007). Effect of different recovery patterns on repeated-sprint ability and neuromuscular responses. Journal of Sports Sciences, 25(8), 905–913.
https://doi.org/10.1080/02640410600898087
Bishop, D.; Spencer, M.; Duffield, R., & Lawrence, S. (2001). The validity of a repeated sprint ability test. Journal of Science and Medicine in Sport, 4(1), 19–29.
Bishop, D.; Girard, O., & Mendez-Villanueva, A. (2011). Repeated-sprint ability – part II: Recommendations for training. Sports Medicine, 41(9), 741–756.
Bogdanis, G. C.; Nevill, M. E.; Boobis, L. H.; Lakomy, H. K., & Nevill, A. M. (1995). Recovery of power output and muscle metabolites following 30-s of maximal sprint cycling in man. The Journal of Physiology, 482(2), 467-480.
Caprino, D.; Clarke, N. D., & Delextrat, A. (2012). The effect of an official match on repeated sprint ability in junior basketball players. Journal of sports sciences, 30(11), 1165-1173.
https://doi.org/10.1080/02640414.2012.695081
Castagna. C.; Manzi, V.; D'Ottavio, S.; Annino, G.; Padua, E., & Bishop, D. (2007). Relation between maximal aerobic power and the ability to repeat sprints in young basketball players. Journal of Strength and Conditioning Research, 21(4), 1172-1176.
https://doi.org/10.1519/r-20376.1
Castagna, C.; Abt, G.; Manzi, V.; Annino, G.; Padua, E., & D'ottavio, S. (2008). Effect of recovery mode on repeated sprint ability in young basketball players. Journal of Strength & Conditioning Research, 22(3), 923-929.
https://doi.org/10.1519/JSC.0b013e31816a4281
Conte, D.; Favero, T.; Lupo, C.; Francioni, F.; Capranica, L., & Tessitore, A. (2015). Time-motion analysis of Italian elite women's basketball games: individual and team analyses. Journal of Strength and Conditioning Research, 29(12), 144-150.
https://doi.org/10.1519/jsc.0000000000000633
Delextrat, A.; Baliqi, F., & Clarke, N. (2013). Repeated sprint ability and stride kinematics are altered following an official match in national-level basketball players. The Journal of Sports Medicine and Physical Fitness, 53(2), 112-118.
Gabbett, T. J. (2010). The development of a test of repeated-sprint ability for elite womenʼs soccer players. Journal of Strength and Conditioning Research, 24(5), 1191–1194.
https://doi.org/10.1519/JSC.0b013e3181d1568c
Gaitanos, G. C.; Williams, C.; Boobis, L. H., & Brooks, S. (1993). Human muscle metabolism during intermittent maximal exercise. Journal of Applied Physiology, 75(2), 712–719.
Gómez, M. A.; Jiménez, S.; Navarro, R.; Lago-Penas, C., & Sampaio, J. (2011). Effects of coaches' timeouts on basketball teams' offensive and defensive performances according to momentary differences in score and game period. European Journal of Sport Science, 11(5), 303-308.
https://doi.org/10.1080/17461391.2010.512366
Hirvonen, J.; Nummela, A.; Rusko, H.; Rehunen, & Härkönen, M. (1992). Fatigue and changes of ATP, creatine phosphate, and lactate during the 400m sprint. Canadian Journal of Sport Science, 17(2),141-144.
Hopkins, W.; Marshall, S.; Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine+ Science in Sports+ Exercise, 41(1), 3.
https://doi.org/10.1249/MSS.0b013e31818cb278
Jones, N. L.; McCartney, N.; Graham, T.; Spriet, L. L.; Kowalchuk, J. M.; Heigenhauser, G. J., & Sutton, J. R. (1985). Muscle performance and metabolism in maximal isokinetic cycling at slow and fast speeds. Journal of Applied Physiology, 59(1), 132-136.
Karatzaferi, C.; de Haan, A.; van Mechelen, W., & Sargeant AJ. (2001). Metabolism changes in single human fibres during brief maximal exercise. Experimental physiology, 86(3), 411-415.
Lloyd, R. S.; Oliver, J. L.; Hughes, M. G., & Williams, C. A. (2011). The influence of chronological age on periods of accelerated adaptation of stretch-shortening cycle performance in pre and postpubescent boys. Journal of Strength & Conditioning Research, 25(7), 1889-1897.
https://doi.org/10.1519/JSC.0b013e3181e7faa8
McInnes, S. E.; Carlson, J. S.; Jones, C. J., & McKenna, M. J. (1995). The physiological load imposed on basketball players during competition. Journal of Sports Sciences, 13(5), 387-397.
https://doi.org/10.1080/02640419508732254
Mohr, M.; Krustrup, P.; Nielsen, J. J.; Nybo, L.; Rasmussen, M. K.; Juel, C., & Bangsbo, J. (2007). Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 292(4), R1594-R1602.
https://doi.org/10.1152/ajpregu.00251.2006
Medbø, J. I.; Gramvik, P., & Jebens, E. (1999). Aerobic and anaerobic energy release during 10 and 30 s bicycle sprints. Acta Kinesiologiae Universitatis Tartuensis, 4, 122-146.
Mendez-Villanueva, A.; Hamer, P., & Bishop, D. (2007). Fatigue responses during repeated sprints matched for initial mechanical output. Medicine and Science in Sports and Exercise, 39(12), 2219-2225.
https://doi.org/10.1249/mss.0b013e31815669dc
Nalcakan, G. R. (2014). The Effects of Sprint Interval vs. Continuous Endurance Training on Physiological and Metabolic Adaptations in Young Healthy Adults. Journal of Human Kinetics, 44(1), 97-109.
https://doi.org/10.2478/hukin-2014-0115
Narazaki, K.; Berg, K.; Stergiou, N., & Chen, B. (2009). Physiological demands of competitive basketball. Scandavian Journal of Medicine and Science in Sports, 19(3), 425-432.
Ozkaya, O. (2014). Paradox in currently available Wingate all-out test indices in milliseconds versus traditionally calculated 5 seconds means. Hacettepe Journal of Sport Sciences, 25(2), 104-107.
Pyne, D. B.; Saunders, P. U.; Montgomery, P. G.; Hewitt, A. J., & Sheehan, K. (2008). Relationships between repeated sprint testing, speed, and endurance. Journal of Strength and Conditioning Research, 22(5), 1633-1637.
Padulo, J.; Tabben, M.; Ardigo, L. P.; Ionel, M.; Popa, C.; Gevat, C.; Zagatto, A. M., & Dello Iacono, A. (2015). Repeated sprint ability related to recovery time in young soccer players. Research in Sports Medicine, 23(4), 412-423.
https://doi.org/10.1080/15438627.2015.1076419
Padulo, J.; Bragazzi, N. L.; Nikolaidis, P. T.; Iacono, A. D.; Attene, G.; Pizzolato, F.; Dal Pupo, J.; Zagatto, A. M.; Oggianu, M., & Migliaccio, G. M. (2016). Repeated sprint ability in young basketball players: multi-direction vs. one-change of direction (Part 1). Frontiers in Physiology, 7.
https://doi.org/10.3389/fphys.2016.00133
Racinais, S.; Perrey, S.; Denis, R., & Bishop D. (2010). Maximal power, but not fatigability, is greater during repeated sprints performed in the afternoon. Chronobiology International, 27(4), 855-864.
https://doi.org/10.3109/07420521003668412
Read, P. J.; Hughes, J.; Stewart, P.; Chavda, S.; Bishop, C.; Edwards, M., & Turner, A. N. (2014). A needs analysis and field-based testing battery for basketball. Strength & Conditioning Journal, 36(3), 13-20.
Ross, A.; Leveritt, M., & Riek S. (2001). Neural influences on sprint running: training adaptations and acute responses. Sports Medicine, 31(6), 409-425.
Ruscello, B.; Tozzo, N.; Briotti, G.; Padua, E.; Ponzetti, F., & D’Ottavio, S. (2013). Influence of the number of trials and the exercise to rest ratio in repeated sprint ability, with changes of direction and orientation. Journal of Strength and Conditioning Research, 27(7), 1904-1919.
https://doi.org/10.1519/JSC.0b013e3182736adf
Sahlin, K., & Ren, J. M. (1989). Relationship of contraction capacity to metabolic changes during recovery from a fatiguing contraction. Journal of Applied Physiology, 67(1), 648-654.
Sahlin, K.; Tonkonogi, M., & Soderlund, K. (1998). Energy supply and muscle fatigue in humans. Acta Physiologica Scandinavica, 162(3), 261–266.
https://doi.org/10.1046/j.1365-201X.1998.0298f.x
Sampaio, J.; Drinkwater, E. J., & Leite, N. M. (2010). Effects of season period, team quality, and playing time on basketball players' game-related statistics. European Journal of Sport Science, 10(2), 141-149.
https://doi.org/10.1080/17461390903311935
Sampaio, J.; Leser, R.; Baca, A.; Calleja-Gonzalez, J.; Coutinho, D.; Gonçalves, B., & Leite, N. (2016). Defensive pressure affects basketball technical actions but not the time-motion variables. Journal of Sport and Health Science, 5(3), 375-380.
Scanlan, A.; Fox, J.; Borges, N.; Tucker, P., & Dalbo V. (2016). Temporal changes in physiological and performance responses across game-specific simulated basketball activity. Journal of Sport and Health Science. Advance online publication.
https://doi.org/10.1016/j.jshs.2016.05.002.
Signorile, J. F.; Ingalls, C., & Tremblay, L. M. (1993). The effects of active and passive recovery on short-term, high intensity power output. Canadian Journal of Applied Physiology, 18(1), 31-42.
Soderlund, K., & Hultman E. (1991). ATP and phosphocreatine changes in single human muscle fibers after intense electrical stimulation. The American Journal of Physiology, 261(6 Pt 1), 737-741.
Spencer, M.; Bishop, D.; Dawson, B., & Goodman, C. (2005). Physiological and metabolic responses of repeated-sprint activities: Specific to field-based team sports. Sports Medicine, 35(12), 1025–1044.
Stapff, A. (2000). Protocols for the physiological assessment of basketball players. In C.J. Gore (Ed.) Physiological tests for elite athletes. (pp. 224-237) Champaign: Human Kinetics.
Stojanovic, M. D.; Ostojic, S. M.; Calleja-Gonzalez, J.; Milosevic, Z., & Mikic, M. (2012). Correlation between explosive strength, aerobic power and repeated sprint ability in elite basketball players. The Journal of Sports Medicine and Physical Fitness, 52(4), 375-381.
Supej, M. (2009). Impact of fatigue on the position of the release arm and shoulder girdle over a longer shooting distance for an elite basketball player. The Journal of Strength & Conditioning Research, 23(3), 1029-1036.
Taylor, J.; Macpherson, T.; Spears, I., & Weston, M. (2015). The effects of repeated-sprint training on field-based fitness measures: a meta-analysis of controlled and non-controlled trials. Sports Medicine, 45(6), 881-891.
https://doi.org/10.1007/s40279-015-0324-9
Tomlin, D. L., & Wenger H. A. (2001). The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Medicine, 31(1), 1-11.