Altitud y deportes de equipo: métodos tradicionales desafiados por un entrenamiento innovador y específico en hipoxia. [Altitude and team sports: traditional methods challenged by innovative sport-specific training in hypoxia].

Autores/as

  • Franck Brocherie Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne
  • Olivier Girard Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne
  • Raphael Faiss Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne
  • Grégoire P Millet Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne

Palabras clave:

entrenamiento en altitud, hipoxia, deportes intermitentes, sprints repetidos, ajuste ecológico, altitude training, hypoxia, intermittent sports, repeated sprints, ecological setting.

Resumen

Entre los diferentes métodos de entrenamiento en altitud, el "entrenamiento hipóxico intermitente" (IHT) – método en el cual los atletas viven al nivel del mar pero se entrenan en condiciones de hipoxia – ha ganado una popularidad sin precedentes. Un análisis exhaustivo de los estudios que incluyen IHT muestra los beneficios sorprendentemente pobres para la mejora del rendimiento al nivel del mar, en comparación con el mismo entrenamiento realizado en normoxia. A pesar de las adaptaciones moleculares positivas observadas después de varias modalidades IHT, las características de estímulo del entrenamiento óptimo en hipoxia son todavía confusas y su traducción funcional en una mejora de rendimiento general es mínima. Para superar algunas limitaciones inherentes al IHT (carga de trabajo inferior debido a la hipoxia), estudios recientes han investigado un nuevo método, llamado RSH, de entrenamiento basado en la repetición de sprints con recuperaciones incompletas en hipoxia. Además, el creciente interés científico acerca de la aplicación práctica del entrenamiento hipóxico legitima el desarrollo de tecnologías innovadoras que sirven a los atletas de un deporte específico. Los objetivos de esta revisión son triples. Primero, analizar los resultados de los estudios que implican ejercicios de alta intensidad realizados en hipoxia para mejorar el rendimiento al nivel del mar diferenciando IHT y RSH. Segundo,  discutir los posibles mecanismos  que sustentan su eficacia y sus limitaciones inherentes. Tercero, presentar los beneficios potenciales del uso de innovaciones tecnológicas que indudablemente contribuirán a mejorar la comprensión de las adaptaciones fisiológicas inducidas por hipoxia mediante la realización de investigaciones pertinentes con un ajuste "ecológico" específico.

Abstract

Among the different altitude training methods, intermittent hypoxic training (IHT); i.e., a method where athletes live at or near sea level but train under hypoxic conditions, has gained unprecedented popularity. A thorough analysis of studies including IHT, however, leads to strikingly poor benefits for sea-level performance improvement, compared to the same training method performed in normoxia. Despite positive molecular adaptations observed after various IHT modalities, the characteristics of optimal training stimulus in hypoxia are still unclear and their functional translation in term of whole-body performance enhancement is minimal. To overcome some of the inherent limitations of IHT (lower workload due to hypoxia), recent studies have successfully investigated a new training method based on the repetition of short sprints with incomplete recoveries in hypoxia; named RSH. Additionally, the growing scientific interest on the practical application of hypoxic training legitimizes the development of innovative technologies serving athletes in a sport-specific setting. The aims of the present review are therefore threefold. First, to critically analyze the results of the studies involving high-intensity exercises performed in hypoxia for sea-level performance enhancement by differentiating IHT and RSH. Second, to discuss the potential mechanisms underpinning their effectiveness and their inherent limitations. Third, to present the potentials benefits of using new technological innovation (i.e., the mobile inflatable simulated hypoxic system) which will undoubtedly contribute to the understanding advancement of hypoxia-induced physiological adaptations by conducting relevant research in the most sport-specific ecological test setting.

http://dx.doi.org/10.5232/ricyde2016.04601

Referencias/references

Álvarez-Herms J.; Julià-Sánchez S.; Gatterer H.; Blank C.; Corbi F.; Pagès T.; Burtscher M., & Viscor G. (2016) Anaerobic training in hypoxia: A new approach to stimulate the rating of effort perception. Physiology and Behavior, 163, 37-42.
http://dx.doi.org/10.1016/j.physbeh.2016.04.035

Aughey, R. J.; Clark, S. A.; Gore, C. J., Townsend, N. E.; Hahn, A. G.; Kinsman, T. A.; Goodman, C.; Chow, C. M.; Martin, D. T.; Hawley, J. A., & McKenna, M. J. (2006) Interspersed normoxia during live high, train low interventions reverses an early reduction in muscle Na+, K +ATPase activity in well-trained athletes. European Journal of Applied Physiology & Occupational Physiology, 98, 299-309.
http://dx.doi.org/10.1007/s00421-006-0280-z

Balsom, P. D.; Gaitanos, G. C.; Ekblom, B., & Sjodin, B. (1994) Reduced oxygen availability during high intensity intermittent exercise impairs performance. Acta Physiologica Scandinavica, 152, 279-285.
http://dx.doi.org/10.1111/j.1748-1716.1994.tb09807.x

Bartsch, P.; Dvorak, J., & Saltin, B. (2008) Football at high altitude. Scandinavian Journal of Medicine and Science in Sports, 18, iii-iv.
http://dx.doi.org/10.1111/j.1600-0838.2008.00826.x

Bartsch, P.; Dvorak, J., & Saltin, B. (2009) A rebuttal. Scandinavian Journal of Medicine and Science in Sports, 19, 608.
http://dx.doi.org/10.1111/j.1600-0838.2009.00994.x

Bartsch, P.; Saltin, B., & Dvorak, J. (2008) Consensus statement on playing football at different altitude. Scandinavian Journal of Medicine and Science in Sports, 18 Suppl 1, 96-99.
http://dx.doi.org/10.1111/j.1600-0838.2008.00837.x

Bassovitch, O. (2010) 'Combining hypoxic methods for peak performance': a biomedical engineering perspective. Sports Medicine, 40, 519-521; author reply 521-513.
http://dx.doi.org/10.2165/11535150-000000000-00000

Bergeron, M. F.; Bahr, R.; Bartsch, P.; Bourdon, L.; Calbet, J. A.; Carlsen, K. H.; Castagna, O.; Gonzalez-Alonso, J.; Lundby, C.; Maughan, R. J.; Millet, G.; Mountjoy, M.; Racinais, S.; Rasmussen, P.; Singh, D. G.; Subudhi, A. W.; Young, A. J.; Soligard, T., & Engebretsen, L. (2012) International Olympic Committee consensus statement on thermoregulatory and altitude challenges for high-level athletes. British Journal of Sports Medicine, 46, 770-779.
http://dx.doi.org/10.1136/bjsports-2012-091296

Billaut, F.; Gore, C. J., & Aughey, R. J. (2012) Enhancing team-sport athlete performance: is altitude training relevant? Sports Medicine, 42, 751-767.
http://dx.doi.org/10.1007/BF03262293

Bonetti, D. L., & Hopkins, W. G. (2009) Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Medicine, 39, 107-127.
http://dx.doi.org/10.2165/00007256-200939020-00002

Brocherie, F.; Girard, O.; Faiss, R., & Millet, G. P. (2015a) High-intensity intermittent training in hypoxia: a double-blinded, placebo-controlled field study in youth football players. Journal of Strength and Conditioning Research, 29, 226-237.
http://dx.doi.org/10.1519/JSC.0000000000000590

Brocherie, F.; Millet, G. P., & Girard, O. (2015b) Neuro-mechanical and metabolic adjustments to the repeated anaerobic sprint test in professional football players. European Journal of Applied Physiology, 115, 891-903.
http://dx.doi.org/10.1007/s00421-014-3070-z

Brocherie, F.; Millet, G. P.; Hauser, A.; Steiner, T.; Rysman, J.; Wehrlin, J. P., & Girard, O. (2015c) "Live High-Train Low and High" Hypoxic Training Improves Team-Sport Performance. Medicine and Science in Sports and Exercise, 47, 2140-2149.
http://dx.doi.org/10.1249/MSS.0000000000000630

Brocherie F.; Millet GP., & Girard O. (2016) Psycho-Physiological Responses to Repeated-Sprint Training in Normobaric Hypoxia and Normoxia. International Journal of Sports Physiology and Performance, [Epub ahead of print].
http://dx.doi.org/10.1123/ijspp.2016-0052

Buchheit, M.; Kuitunen, S.; Voss, S. C.; Williams, B. K.; Mendez-Villanueva, A., & Bourdon, P. C. (2012) Physiological strain associated with high-intensity hypoxic intervals in highly trained young runners. Journal of Strength and Conditioning Research, 26, 94-105.
http://dx.doi.org/10.1519/JSC.0b013e3182184fcb

Casey, D. P., & Joyner, M. J. (2012) Compensatory vasodilatation during hypoxic exercise: mechanisms responsible for matching oxygen supply to demand. Journal of Physiology, 590, 6321-6326.
http://dx.doi.org/10.1113/jphysiol.2012.242396

Chapman, R. F.; Karlsen, T.; Resaland, G. K.; Ge, R. L.; Harber, M. P.; Witkowski, S.; Stray-Gundersen, J., & Levine, B. D. (2014) Defining the "dose" of altitude training: how high to live for optimal sea level performance enhancement. Journal of Applied Physiology (1985), 116, 595-603.
http://dx.doi.org/10.1152/japplphysiol.00634.2013

Clark, S. A.; Quod, M. J.; Clark, M. A.; Martin, D. T.; Saunders, P. U., & Gore, C. J. (2009) Time course of haemoglobin mass during 21 days live high:train low simulated altitude. European Journal of Applied Physiology, 106, 399-406.
http://dx.doi.org/10.1007/s00421-009-1027-4

Cleland, S. M.; Murias, J. M.; Kowalchuk, J. M., & Paterson, D. H. (2012) Effects of prior heavy-intensity exercise on oxygen uptake and muscle deoxygenation kinetics of a subsequent heavy-intensity cycling and knee-extension exercise. Applied Physiology, Nutrition and Metabolism, 37, 138-148.
http://dx.doi.org/10.1139/h11-143

Coppel, J.; Hennis, P.; Gilbert-Kawai, E., & Grocott, M. P. (2015) The physiological effects of hypobaric hypoxia versus normobaric hypoxia: a systematic review of crossover trials. Extreme Physiology and Medicine, 4, 2.
http://dx.doi.org/10.1186/s13728-014-0021-6

Crowley, W. F., Jr. (2003) Translation of basic research into useful treatments: how often does it occur? The American Journal of Medicine, 114, 503-505.
http://dx.doi.org/10.1016/S0002-9343(03)00119-0

Daniels, J., & Oldridge, N. (1970) The effects of alternate exposure to altitude and sea level on world-class middle-distance runners. Medicine and Science in Sports, 2, 107-112.
http://dx.doi.org/10.1249/00005768-197023000-00001

DiPasquale, D. M.; Strangman, G. E.; Harris, N. S., & Muza, S. R. (2015) Hypoxia, Hypobaria, and Exercise Duration Affect Acute Mountain Sickness. Aerospace Medicine and Human Performance, 86, 614-619.
http://dx.doi.org/10.3357/AMHP.4266.2015

Dufour, S. P.; Ponsot, E.; Zoll, J.; Doutreleau, S.; Lonsdorfer-Wolf, E.; Geny, B.; Lampert, E.; Fluck, M.; Hoppeler, H.; Billat, V.; Mettauer, B.; Richard, R., & Lonsdorfer, J. (2006) Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity. Journal of Applied Physiology, 100, 1238-1248.
http://dx.doi.org/10.1152/japplphysiol.00742.2005

Faiss, R.; Leger, B.; Vesin, J. M.; Fournier, P. E.; Eggel, Y.; Deriaz, O., & Millet, G. P. (2013a) Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS One, 8, e56522.
http://dx.doi.org/10.1371/journal.pone.0056522

Faiss, R.; Pialoux, V.; Sartori, C.; Faes, C.; Deriaz, O., & Millet, G. P. (2013b) Ventilation, Oxidative Stress and Nitric Oxide in Hypobaric vs. Normobaric Hypoxia. Medicine and Science in Sports and Exercise, 45, 253-260.
http://dx.doi.org/10.1249/MSS.0b013e31826d5aa2

Faiss, R.; Willis, S.; Born, D. P.; Sperlich, B.; Vesin, J. M.; Holmberg, H. C., & Millet, G. P. (2015) Repeated double-poling sprint training in hypoxia by competitive cross-country skiers. Medicine and Science in Sports and Exercise, 47, 809-817.
http://dx.doi.org/10.1249/MSS.0000000000000464

Friedmann, B.; Frese, F.; Menold, E.; Kauper, F.; Jost, J., & Bartsch, P. (2005) Individual variation in the erythropoietic response to altitude training in elite junior swimmers. British Journal of Sports Medicine, 39, 148-153.
http://dx.doi.org/10.1136/bjsm.2003.011387

Fulco, C. S.; Beidleman, B. A., & Muza, S. R. (2013) Effectiveness of preacclimatization strategies for high-altitude exposure. Exercise and Sport Sciences Reviews, 41, 55-63.
http://dx.doi.org/10.1097/JES.0b013e31825eaa33

Fulco, C. S.; Muza, S. R.; Beidleman, B. A.; Demes, R., Staab, J. E.; Jones, J. E., & Cymerman, A. (2011) Effect of repeated normobaric hypoxia exposures during sleep on acute mountain sickness, exercise performance, and sleep during exposure to terrestrial altitude. The American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 300, R428-436.
http://dx.doi.org/10.1152/ajpregu.00633.2010

Galvin, H. M.; Cooke, K.; Sumners, D. P.; Mileva, K. N., & Bowtell, J. L. (2013) Repeated sprint training in normobaric hypoxia. British Journal of Sports Medicine, 47 Suppl 1, i74-i79.
http://dx.doi.org/10.1136/bjsports-2013-092826

Garvican-Lewis, L. A.; Halliday, I.; Abbiss, C. R.; Saunders, P. U., & Gore, C. J. (2015) Altitude Exposure at 1800 m Increases Haemoglobin Mass in Distance Runners. Journal of Sports Science and Medicine, 14, 413-417.

Gatterer, H.; Faulhaber, M., & Netzer, N. (2009) Hypoxic training for football players. Scandinavian Journal of Medicine and Science in Sports, 19, 607; author reply 608.
http://dx.doi.org/10.1111/j.1600-0838.2009.00993.x

Gatterer, H.; Philippe, M.; Menz, V.; Mosbach, F.; Faulhaber, M., & Burtscher, M. (2014) Shuttle-run sprint training in hypoxia for youth elite soccer players: a pilot study. Journal of Sports Science and Medicine, 13, 731-735.

Girard, O.; Amann, M.; Aughey, R.; Billaut, F.; Bishop, D. J.; Bourdon, P.; Buchheit, M.; Chapman, R.; D'Hooghe, M.; Garvican-Lewis, L. A.; Gore, C. J.; Millet, G. P.; Roach, G. D.; Sargent, C.; Saunders, P. U.; Schmidt, W., & Schumacher, Y. O. (2013a) Position statement--altitude training for improving team-sport players' performance: current knowledge and unresolved issues. British Journal of Sports Medicine, 47 Suppl 1, i8-16.
http://dx.doi.org/10.1136/bjsports-2013-093109

Girard, O.; Brocherie, F., & Millet, G. P. (2013b) On the use of mobile inflatable hypoxic marquees for sport-specific altitude training in team sports. British Journal of Sports Medicine, 47 Suppl 1, i121-i123.
http://dx.doi.org/10.1136/bjsports-2013-092794

Girard, O.; Racinais, S.; Kelly, L.; Millet, G. P., & Brocherie, F. (2011) Repeated sprinting on natural grass impairs vertical stiffness but does not alter plantar loading in soccer players. European Journal of Applied Physiology, 111, 2547-2555.
http://dx.doi.org/10.1007/s00421-011-1884-5

Gore, C. J.; Hahn, A.; Rice, A.; Bourdon, P.; Lawrence, S.; Walsh, C.; Stanef, T.; Barnes, P.; Parisotto, R.; Martin, D., & Pyne, D. (1998) Altitude training at 2690m does not increase total haemoglobin mass or sea level VO2max in world champion track cyclists. Journal of Science and Medicine in Sport, 1, 156-170.
http://dx.doi.org/10.1016/S1440-2440(98)80011-X

Gore, C. J.; Hahn, A. G.; Aughey, R. J.; Martin, D. T.; Ashenden, M. J.; Clark, S. A.; Garnham, A. P.; Roberts, A. D.; Slater, G. J., & McKenna, M. J. (2001) Live high:train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiologica Scandinavica, 173, 275-286.
http://dx.doi.org/10.1152/japplphysiol.00342.2006

Gore, C. J.; Rodriguez, F. A.; Truijens, M. J.; Townsend, N. E.; Stray-Gundersen, J., & Levine, B. D. (2006) Increased serum erythropoietin but not red cell production after 4 wk of intermittent hypobaric hypoxia (4,000-5,500 m). Journal of Applied Physiology, 101, 1386-1393.
http://dx.doi.org/10.1046/j.1365-201X.2001.00906.x

Hamlin, M. J.; Hinckson, E. A.; Wood, M. R., & Hopkins, W. G. (2008) Simulated rugby performance at 1550-m altitude following adaptation to intermittent normobaric hypoxia. Journal of Science and Medicine in Sport, 11, 593-599.
http://dx.doi.org/10.1016/j.jsams.2007.07.005

Hamlin, M. J.; Marshall, H. C.; Hellemans, J.; Ainslie, P. N., & Anglem, N. (2010a) Effect of intermittent hypoxic training on 20 km time trial and 30 s anaerobic performance. Scandinavian Journal of Medicine and Science in Sports, 20, 651-661.
http://dx.doi.org/10.1111/j.1600-0838.2009.00946.x

Hamlin, M. J.; Marshall, H. C.; Hellemans, J.; Ainslie, P. N., & Anglem, N. (2010b) Effect of intermittent hypoxic training on 20 km time trial and 30 s anaerobic performance. Scandinavian Journal of Medicine and Science in Sports, 20, 651-661.
http://dx.doi.org/10.1111/j.1600-0838.2009.00946.x

Heinzer, R.; Saugy, J. J.; Rupp, T.; Tobback, N.; Faiss, R.; Bourdillon, N.; Rubio, J. H., & Millet, G. P. (2016) Comparison of Sleep Disorders between Real and Simulated 3,450-m Altitude. Sleep. [Epub ahead of print].

Hendriksen, I. J., & Meeuwsen, T. (2003) The effect of intermittent training in hypobaric hypoxia on sea-level exercise: a cross-over study in humans. European Journal of Applied Physiology & Occupational Physiology, 88, 396-403.
http://dx.doi.org/10.1007/s00421-002-0708-z

Holliss, B. A.; Fulford, J.; Vanhatalo, A.; Pedlar, C. R., & Jones, A. M. (2013) Influence of intermittent hypoxic training on muscle energetics and exercise tolerance. Journal of Applied Physiology, 114, 611-619.
http://dx.doi.org/10.1152/japplphysiol.01331.2012

Hoppeler, H., & Vogt, M. (2001) Muscle tissue adaptations to hypoxia. Journal of Experimental Biology, 204, 3133-3139.

Iaia, F. M.; Rampinini, E., & Bangsbo, J. (2009) High-intensity training in football. International Journal of Sports Physiology and Performance, 4, 291-306.

Kasai, N.; Mizuno, S.; Ishimoto, S.; Sakamoto, E.; Maruta, M., & Goto, K. (2015) Effect of training in hypoxia on repeated sprint performance in female athletes. Springerplus, 4, 310.
http://dx.doi.org/10.1186/s40064-015-1041-4

Katayama, K.; Sato, Y.; Morotome, Y.; Shima, N.; Ishida, K.; Mori, S., & Miyamura, M. (1999) Ventilatory chemosensitive adaptations to intermittent hypoxic exposure with endurance training and detraining. Journal of Applied Physiology, 86, 1805-1811.

Kime, R.; Karlsen, T.; Nioka, S.; Lech, G.; Madsen, O.; Saeterdal, R.; Im, J.; Chance, B., & Stray-Gundersen, J. (2003) Discrepancy between cardiorespiratory system and skeletal muscle in elite cyclists after hypoxic training. Dynamic Medicine, 2, 4.
http://dx.doi.org/10.1186/1476-5918-2-4

Klein, C. S.; Marsh, G. D.; Petrella, R. J., & Rice, C. L. (2003) Muscle fiber number in the biceps brachii muscle of young and old men. Muscle Nerve, 28, 62-68.
http://dx.doi.org/10.1002/mus.10386

Levine, B. D., & Stray-Gundersen, J. (2006) Dose-response of altitude training: how much altitude is enough? Advances in Experimental Medicine and Biology, 588, 233-247.
http://dx.doi.org/10.1007/978-0-387-34817-9_20

Lundby, C.; Calbet, J. A., & Robach, P. (2009) The response of human skeletal muscle tissue to hypoxia. Cellular and Molecular Life Sciences, 66, 3615-3623.
http://dx.doi.org/10.1007/s00018-009-0146-8

Lundby, C.; Millet, G. P.; Calbet, J. A.; Bartsch, P., & Subudhi, A. W. (2012) Does 'altitude training' increase exercise performance in elite athletes? British Journal of Sports Medicine, 46, 792-795.
http://dx.doi.org/10.1136/bjsports-2012-091231

Manimmanakorn, A.; Hamlin, M. J.; Ross, J. J.; Taylor, R., & Manimmanakorn, N. (2012) Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes. Journal of Science and Medicine in Sport, 16, 337-342.
http://dx.doi.org/10.1016/j.jsams.2012.08.009

Manimmanakorn, A.; Manimmanakorn, N.; Taylor, R.; Draper, N.; Billaut, F.; Shearman, J. P., & Hamlin, M. J. (2013) Effects of resistance training combined with vascular occlusion or hypoxia on neuromuscular function in athletes. European Journal of Applied Physiology, 113, 1767-1774.
http://dx.doi.org/10.1007/s00421-013-2605-z

Martino, M.; Myers, K., & Bishop, P. (1995) Effects of 21 days training at altitude on sea-level anaerobic performance in competitive swimmers. Medicine and Science in Sports and Exercise, 27, (abstract 37).
http://dx.doi.org/10.1249/00005768-199505001-00037

McDonough, P.; Behnke, B. J.; Padilla, D. J.; Musch, T. I., & Poole, D. C. (2005) Control of microvascular oxygen pressures in rat muscles comprised of different fibre types. Journal of Physiology, 563, 903-913.
http://dx.doi.org/10.1113/jphysiol.2004.079533

Mendez-Villanueva, A.; Edge, J.; Suriano, R.; Hamer, P., & Bishop, D. (2012) The recovery of repeated-sprint exercise is associated with PCr resynthesis, while muscle pH and EMG amplitude remain depressed. PLoS ONE, 7, e51977.
http://dx.doi.org/10.1371/journal.pone.0051977

Millet, G. P., & Faiss, R. (2012) Hypoxic conditions and exercise-to-rest ratio are likely paramount. Sports Medicine, 42, 1081-1083; author reply 1083-1085.
http://dx.doi.org/10.2165/11640210-000000000-00000

Millet, G. P.; Faiss, R.; Brocherie, F., & Girard, O. (2013) Hypoxic training and team sports: a challenge to traditional methods? British Journal of Sports Medicine, 47 Suppl 1, i6-i7.
http://dx.doi.org/10.1136/bjsports-2013-092793

Millet, G. P.; Faiss, R., & Pialoux, V. (2012) Point: Hypobaric hypoxia induces different physiological responses from normobaric hypoxia. Journal of Applied Physiology, 112, 1783-1784.
http://dx.doi.org/10.1152/japplphysiol.00067.2012

Millet, G. P.; Roels, B.; Schmitt, L.; Woorons, X., & Richalet, J. P. (2010) Combining hypoxic methods for peak performance. Sports Medicine, 40, 1-25.
http://dx.doi.org/10.2165/11317920-000000000-00000

Mizuno, M.; Juel, C.; Bro-Rasmussen, T.; Mygind, E.; Schibye, B.; Rasmussen, B., & Saltin, B. (1990) Limb skeletal muscle adaptation in athletes after training at altitude. Journal of Applied Physiology, 68, 496-502.

Morton, J. P., & Cable, N. T. (2005) Effects of intermittent hypoxic training on aerobic and anaerobic performance. Ergonomics, 48, 1535-1546.
http://dx.doi.org/10.1080/00140130500100959

Peronnet, F.; Thibault, G., & Cousineau, D. L. (1991) A theoretical analysis of the effect of altitude on running performance. Journal of Applied Physiology (1985), 70, 399-404.

Ponsot, E.; Dufour, S. P.; Zoll, J.; Doutrelau, S.; N'Guessan, B.; Geny, B.; Hoppeler, H.; Lampert, E.; Mettauer, B.; Ventura-Clapier, R., & Richard, R. (2006) Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle. Journal of Applied Physiology, 100, 1249-1257.
http://dx.doi.org/10.1152/japplphysiol.00361.2005

Puype, J.; Van Proeyen, K.; Raymackers, J. M.; Deldicque, L., & Hespel, P. (2013) Sprint Interval Training in Hypoxia Stimulates Glycolytic Enzyme Activity. Medicine and Science in Sports and Exercise, 45, 2166-2174.
http://dx.doi.org/10.1249/MSS.0b013e31829734ae

Robach, P.; Schmitt, L.; Brugniaux, J. V.; Roels, B.; Millet, G.; Hellard, P.; Nicolet, G.; Duvallet, A.; Fouillot, J. P.; Moutereau, S.; Lasne, F.; Pialoux, V.; Olsen, N. V., & Richalet, J. P. (2006) Living high-training low: effect on erythropoiesis and aerobic performance in highly-trained swimmers. European Journal of Applied Physiology, 96, 423-433.
http://dx.doi.org/10.1007/s00421-005-0089-1

Robertson, E. Y.; Saunders, P. U.; Pyne, D. B.; Aughey, R. J.; Anson, J. M., & Gore, C. J. (2010) Reproducibility of performance changes to simulated live high/train low altitude. Medicine and Science in Sports and Exercise, 42, 394-401.
http://dx.doi.org/10.1249/MSS.0b013e3181b34b57

Rodriguez, F. A.; Iglesias, X.; Feriche, B.; Calderon-Soto, C.; Chaverri, D.; Wachsmuth, N. B.; Schmidt, W., & Levine, B. D. (2015) Altitude Training in Elite Swimmers for Sea Level Performance (Altitude Project). Medicine and Science in Sports and Exercise, 47, 1965-1978.
http://dx.doi.org/10.1249/MSS.0000000000000626

Roels, B.; Bentley, D. J.; Coste, O.; Mercier, J., & Millet, G. P. (2007) Effects of intermittent hypoxic training on cycling performance in well-trained athletes. European Journal of Applied Physiology and Occupational Physiology, 101, 359-368.
http://dx.doi.org/10.1007/s00421-007-0506-8

Roels, B.; Millet, G. P.; Marcoux, C. J.; Coste, O.; Bentley, D. J., & Candau, R. B. (2005) Effects of hypoxic interval training on cycling performance. Medicine and Science in Sports and Exercise, 37, 138-146.
http://dx.doi.org/10.1249/01.MSS.0000150077.30672.88

Roels, B.; Thomas, C.; Bentley, D. J.; Mercier, J.; Hayot, M., & Millet, G. (2007) Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers. Journal of Applied Physiology, 102, 79-86.
http://dx.doi.org/10.1152/japplphysiol.01319.2005

Roskamm, H.; Landry, F.; Samek, L.; Schlager, M.; Weidermann, H., & Reindell, H. (1969) Effects of a standardized ergometer training program at three different altitudes. Journal of Applied Physiology, 27, 840-847.

Sanchis-Moysi, J.; Idoate, F.; Olmedillas, H.; Guadalupe-Grau, A.; Alayon, S.; Carreras, A.; Dorado, C., & Calbet, J. A. (2010) The upper extremity of the professional tennis player: muscle volumes, fiber-type distribution and muscle strength. Scandinavian Journal of Medicine and Science in Sports, 20, 524-534.
http://dx.doi.org/10.1111/j.1600-0838.2009.00969.x

Saugy, J. J.; Schmitt, L.; Cejuela, R.; Faiss, R.; Hauser, A.; Wehrlin, J. P.; Rudaz, B.; Delessert, A.; Robinson, N., & Millet, G. P. (2014) Comparison of "Live High-Train Low" in normobaric versus hypobaric hypoxia. PLoS One, 9, e114418.
http://dx.doi.org/10.1371/journal.pone.0114418

Scott, B. R.; Slattery, K. M.; Sculley, D. V., & Dascombe, B. J. (2014) Hypoxia and Resistance Exercise: A Comparison of Localized and Systemic Methods. Sports Medicine, 44, 1037-1054.
http://dx.doi.org/10.1007/s40279-014-0177-7

Semenza, G. L.; Shimoda, L. A., & Prabhakar, N. R. (2006) Regulation of gene expression by HIF-1. Novartis Foundation Symposia, 272, 2-8; discussion 8-14, 33-16.
http://dx.doi.org/10.1002/9780470035009.ch2

Smith, K. J., & Billaut, F. (2010) Influence of cerebral and muscle oxygenation on repeated-sprint ability. European Journal of Applied Physiology, 109, 989-999.
http://dx.doi.org/10.1007/s00421-010-1444-4

Toffoli, S.; Roegiers, A.; Feron, O.; Van Steenbrugge, M.; Ninane, N.; Raes, M., & Michiels, C. (2009) Intermittent hypoxia is an angiogenic inducer for endothelial cells: role of HIF-1. Angiogenesis, 12, 47-67.
http://dx.doi.org/10.1007/s10456-009-9131-y

Truijens, M. J.; Toussaint, H. M.; Dow, J., & Levine, B. D. (2003) Effect of high-intensity hypoxic training on sea-level swimming performances. Journal of Applied Physiology, 94, 733-743.
http://dx.doi.org/10.1152/japplphysiol.00079.2002

Vogt, M.; Puntschart, A.; Geiser, J.; Zuleger, C.; Billeter, R., & Hoppeler, H. (2001) Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. Journal of Applied Physiology, 91, 173-182.

Wehrlin, J. P., & Marti, B. (2006) Live high-train low associated with increased haemoglobin mass as preparation for the 2003 World Championships in two native European world class runners. British Journal of Sports Medicine, 40, e3; discussion e3.

Wilber, R. L. (2001) Current trends in altitude training. Sports Medicine, 31, 249-265.
http://dx.doi.org/10.2165/00007256-200131040-00002

Wilber, R. L. (2007) Application of altitude/hypoxic training by elite athletes. Medicine and Science in Sports and Exercise, 39, 1610-1624.
http://dx.doi.org/10.1249/mss.0b013e3180de49e6

Wilber, R. L.; Stray-Gundersen, J., & Levine, B. D. (2007) Effect of hypoxic "dose" on physiological responses and sea-level performance. Medicine and Science in Sports and Exercise, 39, 1590-1599.
http://dx.doi.org/10.1249/mss.0b013e3180de49bd

Zoll, J.; Ponsot, E.; Dufour, S.; Doutreleau, S.; Ventura-Clapier, R.; Vogt, M.; Hoppeler, H.; Richard, R., & Fluck, M. (2006) Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. Journal of Applied Physiology, 100, 1258-1266.
http://dx.doi.org/10.1152/japplphysiol.00359.2005

 

Descargas

Archivos adicionales

Publicado

2016-06-18

Número

Sección

Artículos/articles