Respuesta hidro-sedimentaria en dos cuencas mediterráneas representativas afectadas por el cambio global
DOI:
https://doi.org/10.17735/cyg.v30i1-2.45900Palabras clave:
transporte de sedimento en suspensión, forestación, incendios forestales, técnicas tradicionales de conservación del sueloResumen
El abandono de tierras de cultivo marginales durante la segunda mitad del siglo XX ha supuesto un proceso de forestación en la Europa mediterránea. Paralelamente, esta mayor disponibilidad de biomasa ha incrementado la superficie afectada por incendios forestales. Con el objetivo de establecer el efecto de estos procesos de cambio global en la respuesta hidrosedimentaria, se comparan dos cuencas de drenaje mediterráneas forestadas cuyas laderas fueron usadas intensamente por la agricultura mediante aterrazamiento hasta los años 60 del siglo XX. Una de ellas, además, afectada periódicamente por incendios forestales. Dicha comparación se llevó a cabo mediante la monitorización del caudal y del transporte de sedimento en suspensión durante un período de estudio representativo (i.e., enero-septiembre 2014). Los valores de escorrentía y producción de sedimento en suspensión muestran una diferencia de dos o más órdenes de magnitud entre ambas cuencas, siendo mayor en aquella no afectada por incendios forestales (i.e., 469 mm y 14 t km-2 frente a 1 mm y 0,003 t km-2). Este hecho es propiciado por una contrastada dinámica pluviométrica debido a la ubicación de las cuencas en distintas áreas de afinidad de precipitación en la isla de Mallorca. Por ende, los valores de producción de sedimento en suspensión fueron bajos o muy bajos (i.e., <15 t a-1 km-2) si se comparan con valores de la Europa mediterránea. Aquí, la masiva presencia de bancales y litologías carbonatadas reducen significativamente la conectividad ladera-cauce, limitando la transferencia de agua y sedimento.
Citas
Arcement Jr, G. J.; Schneider, V.R. (1989). Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Flood Plains. United States Geological Survey Water‐supply Paper, 2339.
Arnáez J, Lana‐Renault N, Lasanta T, Ruiz‐Flaño P, Castroviejo J. (2015). Effects of farming terraces on hydrological and geomorphological processes. A review. CATENA, 128, 122‐134. http://dx.doi.org/10.1016/j.catena.2015.01.021
Batalla, R.J. (1993). Sand‐bed transport contribution to the sediment budget of a granitic Mediterranean drainage basin. Unpublished PhD Thesis. University of Barcelona: Barcelona.
Bellin N, van Wesemael B, Meerkerk A, Vanacker V, Barbera GG. 2009. Abandonment of soil and water conservation structures in Mediterranean ecosystems: a case study from south east Spain. Catena 76: 114–121. http://dx.doi.org/10.1016/j.catena.2008.10.002
Brown, L.C.; Foster, G.R. (1987). Storm erosivity using idealized intensity distributions. Transactions of the ASAE‐American Society of Agricultural Engineers (USA), 30, 379‐386.
Buendía, C.; Bussi, G.; Tuset, J.; Vericat, D.; Sabater, S.; Palau, A.; Batalla, R.J.; (2015). Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment. Science of The Total Environment, 540, 144‐157. http://dx.doi.org/10.1016/j.scitotenv.2015.07.005
Calvo‐Cases, A.; Boix‐Fayos, C.; Imeson, A.C. (2003). Runoff generation, sediment movement and soil water behaviour on calcareous (limestone) slopes of some Mediterranean environments in southeast Spain. Geomorphology, 50, 269‐291. http://dx.doi.org/10.1016/S0169-555X(02)00218-0
Cammeraat, E.L. (2004). Scale dependent thresholds in hydrological and erosion response of a semi‐arid catchment in southeast Spain. Agriculture, Ecosystems & Environment, 104, 317‐332. http://dx.doi.org/10.1016/j.agee.2004.01.032
Cerdà A.; Doerr SH. (2005). Influence of vegetation recovery on soil hydrology and erodibility following fire: an 11-year investigation. International Journal of Wildland Fire 14(4) 423–437. http://dx.doi.org/10.1071/WF05044
De Girolamo, A.M.; Pappagallo, G.; Lo Porto, A. (2015). Temporal variability of suspended sediment transport and rating curves in a Mediterranean river basin: The Celone (SE Italy). CATENA, 128, 135‐143. http://dx.doi.org/10.1016/j.catena.2014.09.020
Estrany, J.; Garcia, C.; Batalla, R.J. (2009). Suspended sediment transport in a small Mediterranean agricultural catchment. Earth Surface Processes and Landforms, 34(7), 929-940. http://dx.doi.org/10.1002/esp.1777
Estrany, J.; Garcia, C.; Alberich, R. (2010). Streamflow dynamics in a Mediterranean temporary river. Hydrological Sciences Journal, 55(5), 717-736. http://dx.doi.org/10.1080/02626667.2010.493740
FAO (2006). Guidelines for soil description. 4ª Ed. (revisada). Soil Resources, Management and Conservation Service, Land and Water Development Division. FAO, Roma, 70 pp.
FAO, (2014). El estado de los bosques 2014. Organización de las Naciones Unidas para la Agricultura y la Alimentación, Roma, 146 pp.
Gimeno‐García, E.; Andreu, V.; Rubio, J.L. (2007). Influence of vegetation recovery on water erosion at short and medium‐term after experimental fires in a Mediterranean shrubland. CATENA, 69, 150‐160. http://dx.doi.org/10.1016/j.catena.2006.05.003
Grimalt, M.; Blázquez, M.; Rodríguez, R. (1992). Physical factors, distribution and present land use of terraces in the Tramuntana Range. Pirineos, 139, 15‐25. http://dx.doi.org/10.3989/pirineos.1992.v139.179
Guijarro, J.A. (1986). Contribución a la Bioclimatología de Baleares. Resumen de Tesis Doctoral, Universitat de les Illes Balears, 36 pp.
Hooke, J.M. (2006). Human impacts on fluvial systems in the Mediterranean region. Geomorphology, 79, 311‐335. http://dx.doi.org/10.1016/j.geomorph.2006.06.036
Inbar, M.; Tamir, M.; Wittenberg, L. (1998). Runoff and erosion processes after a forest fire in Mount Carmel, a Mediterranean area. Geomorphology, 24, 17‐33. http://dx.doi.org/10.1016/s0169-555x(97)00098-6
IPCC, (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1132 pp.
Iroumé, A. (1990). Assessment of runoff and suspended sediment yield in a partially forested catchment in Southern Chile. Water Resources Research, 26, 2637‐2642. http://dx.doi.org/10.1029/90wr00839
Kim, D.H.; Sexton, J.O.; Noojipady, P.; Huang, C.; Anand, A.; Channan, S.; Townshend, J.R. (2014). Global, Landsat‐based forest‐cover change from 1990 to 2000. Remote Sensing of Environment, 155, 178‐193. http://dx.doi.org/10.1016/j.rse.2014.08.017
Koulouri, M., Giourga, C., 2007. Land abandonment and slope gradient as key factors of soil erosion in Mediterranean terraced lands. Catena 69, 274–281. http://dx.doi.org/10.1016/j.catena.2006.07.001
Lasanta, T.; Arnáez, J.; Oserín, M.; Ortigosa, L.M. (2001). Marginal lands and erosion in terraced fields in the Mediterranean mountains: a case study in the Camero Viejo (Northwestern Iberian System, Spain). Mountain Research and Development, 21, 69‐76. http://dx.doi.org/10.1659/0276-4741(2001)021[0069:MLAEIT]2.0.CO;2
Latron, J.; Soler, M.; Llorens, P.; Gallart, F. (2008. Spatial and temporal variability of the hydrological response in a small Mediterranean research catchment (Vallcebre, Eastern Pyrenees). Hydrological Processes, 22(6), 775‐787. http://dx.doi.org/10.1002/hyp.6648
Lesschen, J.P., Cammeraat, L.H., Nieman, T., 2008. Erosion and terrace failure due to agricultural land abandonment in a semi-arid environment. Earth Surf. Process. Landf. 33, 1574–1584. http://dx.doi.org/10.1002/esp.1676
Lesschen, J.P., Schoorl, J.M., Cammeraat, L.H., 2009. Modelling runoff and erosion for a semi-arid catchment using a multi-scale approach based on hydrological connectivity. Geomorphology 109 (3–4), 174–183. http://dx.doi.org/10.1016/j.geomorph.2009.02.030
López-Vicente, M., Poesen, J., Navas, A., Gaspar, L., 2013. Predicting runoff and sediment connectivity and soil erosion by water for different land use scenarios in the Spanish Pre-Pyrenees. Catena. http://dx.doi.org/10.1016/j.catena.2011.01.001.
López‐Tarazón, J.A.; Batalla, R.J.; Vericat, D.; Francke, T. (2009). Suspended sediment transport in a highly erodible catchment: the River Isábena (Southern Pyrenees). Geomorphology, 109,210‐221. http://dx.doi.org/10.1016/j.geomorph.2009.03.003
MacDonald, D.; Crabtree, J.R.; Wiersinger, G,; Dax, T.; Stamou, N.; Fleury, P.; Lazpita, J.G.; Gibon, A. (2000). Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. Journal of Environmental Management, 59, 47-69. http://dx.doi.org/10.1006/jema.1999.0335
Mayor, A.G.; Bautista, S.; Llovet, J.; Bellot, J. (2007). Post‐fire hydrological and erosional responses of a Mediterranean landscpe: Seven years of catchment‐scale dynamics. CATENA, 71, 68‐75. http://dx.doi.org/10.1016/j.catena.2006.10.006
Ministerio de Agricultura (1971). Inventario Forestal Nacional Baleares. Dirección General de Montes, Caza y Pesca Fluvial. Subdirección de Defensa de la Riqueza Forestal. Sección de Estudios Técnicos. 86 pp.
Ministerio de Agricultura, Alimentación y Medio Ambiente (2011). Inventario Forestal Nacional Illes Balears. Dirección General de Desarrollo Rural y Política Forestal. Área de Inventario y Estadísticas Forestales. 48 pp.
Moody, J.A.; Martin, D.A. (2009). Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States. International Journal of Wildland Fire, 18, 96‐115. http://dx.doi.org/10.1071/WF07162
Morán‐Tejada, E.; Ceballos‐Barbancho, A.; Llorente‐Pinto, J.M. (2010). Hydrological response of Mediterranean headwaters to climate oscillations and land‐cover changes: The Mountains of Duero River basin (Central Spain). Global and Planetary Change, 72, 39‐49. http://dx.doi.org/10.1016/j.gloplacha.2010.03.003
Norrant, C.; Douguédroit, A. (2006). Monthly and daily precipitation trends in the Mediterranean (1950‐ 2000). Theoretical and Applied Climatology, 83 (1‐4), 89‐106. http://dx.doi.org/10.1007/s00704-005-0163-y
Pavanelli, D.; Pagliarani, A. (2002). SW‐ Soil and Water: Monitoring Water Flow, Turbidity and Suspended Sediment Load, from an Apennine Catchment Basin, Italy. Biosystems Engineering, 83, 463‐468. http://dx.doi.org/10.1006/bioe.2002.0126
Prosser, I.P.; Williams, L. (1998). The effect of wildfire on runoff and erosion in native Eucalyptus forest. Hydrological Processes, 12, 251-265. http://dx.doi.org/10.1002/(SICI)1099-1085(199802)12:2<251::AID-HYP574>3.0.CO;2-4
Phillips, J.M.; Webb, B.W.; Walling, D.E.; Leeks, G.J.L. (1999). Estimating the suspended sediment loads of rivers in the LOIS study area using infrequent samples. Hydrological Processes, 13, 1035‐1050. http://dx.doi.org/10.1002/(sici)1099-1085(199905)13:7<1035::aid-hyp788>3.0.co;2-k
Schick, P.A. (1967): Suspended sampler and bedload trap. En: Field methods for the study of slope and fluvial processes. Rev. Geomorphologie Dynamique, 17, 181‐182.
Schneider, C.; Laizé, C.L.R.; Acreman, M.C.; Flörke, M. (2013). How will climate change modify river flow regimes in Europe? Hydrological Earth System Sciences, 17, 325‐339. http://dx.doi.org/10.5194/hess-17-325-2013
Scott, D.F.; Versfeld, D.B.; Lesch, W. (1998). Erosion and sediment yield in relation to afforestation and fire in the mountains of the Western Cape Province, South Africa. South African Geographical Journal, 80, 52‐59. http://dx.doi.org/10.1080/03736245.1998.9713644
Shakesby, R.A. (2011). Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Science Reviews, 105, 71–100. http://dx.doi.org/10.1016/j.earscirev.2011.01.001
Smith, H.G.; Sheridan, G.J.; Lane, P.N.; Nyman, P.; Haydon, S. (2011). Wildfire effects on water quality in forest catchments: a review with implications for water supply. Journal of Hydrology, 396, 170‐192. http://dx.doi.org/10.1016/j.jhydrol.2010.10.043
Sumner, G.; Ramis, C.; Guijarro, J.A. (1993). The spatial organization of daily rainfall over Mallorca, Spain. International Journal of Climatology, 13(1), 89‐109. http://dx.doi.org/10.1002/joc.3370130107
Tarolli, P., Preti, F., Romano, N., 2014. Terraced landscapes: from an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene. http://dx.doi.org/10.1016/j.ancene.2014.03.002.
Tomaz, C.; Alegria, C.; Monteiro, J.M.; Teixeira, M.C. (2013). Land cover change and afforestation of marginal and abandoned agricultural land: A 10 year analysis in a Mediterranean region. Forest Ecology and Management, 308, 40‐49. http://dx.doi.org/10.1016/j.foreco.2013.07.044
Tzorakis, O.; Nikolaidis, N.P. (2007). A generalized framework for modelling the hydrologic and biogeochemical response of a Mediterranean temporary river basin. Journal of Hydrology, 346,112‐121. http://dx.doi.org/10.1016/j.jhydrol.2007.08.025
Úbeda, X.; Outeiro, L. (2009): Physical and chemical effects of fire on soil. En: Fire Effects on Soils and Restoration Strategies (A. Cerdà; P.R. Robichaud, eds.). Science Publishers. Endfield, 105‐132. http://dx.doi.org/10.1201/9781439843338-c4
Van Dijk, A.I.J.M.; Bruijnzeel, L.A.; Rosewell, C.J. (2002). Rainfall intensity‐kinetic energy relationships: a critical literature appraisal. Journal of Hydrology, 261, 1‐23. http://dx.doi.org/10.1016/S0022-1694(02)00020-3
Vanmaercke, M.; Poesen, J.; Verstraeten, G.; de Vente, J.; Ocakoglu, F. (2011). Sediment yield in Europe: Spatial patterns and scale dependency. Geomorphology, 130(3‐4), 142‐161. http://dx.doi.org/10.1016/j.geomorph.2011.03.010
Warrick, J.A.; Hatten, J.A.; Pasternack, G.B.; Gray, A.B.; Goni, M.A.; Wheatcroft, R.A. (2012). The effects of wildfire on the sediment yield of a coastal California watershed. Geological Society of America Bulletin, 124(7‐8), 1130‐1146. http://dx.doi.org/10.1130/b30451.1
Wester T.; Wasklewicz T.; Staley, D. (2014) Functional and structural connectivity within a recently burned drainage basin. Geomorphology, 206, 362–373. http://dx.doi.org/10.1016/j.geomorph.2013.10.011
YACU (2002). Estudio de caracterización del régimen extremo de precipitaciones en la isla de Mallorca. Memoria. Secció d’Estudis i Projectes, Direcció General de Recursos Hídrics, Conselleria de Medi Ambient, Govern de les Illes Balears: Palma de Mallorca.