Aplicación de los isótopos cosmogénicos terrestres en terrenos volcánicos del holoceno en México: experiencias y retos
DOI:
https://doi.org/10.17735/cyg.v36i3-4.96210Palabras clave:
dataciones; isótopos cosmogénicos terrestres; Holoceno; relieves volcánicos; volcanes mexicanosResumen
En este trabajo se evalúa la aplicación de los isótopos cosmogénicos terrestres 10Be y 36Cl producidos in situ en dos centros eruptivos mexicanos, el volcán Jumento y el Complejo Volcánico Tacaná, para llevar a cabo la datación de relieves volcánicos y demostrar su edad holocénica. Su uso ha permitido mejorar la historia volcánica de ambos centros eruptivos, pero también ha puesto de manifiesto incertidumbres que deben ser solventadas para la obtención de edades más precisas. Así, si tenemos xenocristales de cuarzo en los relieves volcánicos, como por ejemplo en lavas, se puede aplicar 10Be pero es necesario tomar una cantidad suficiente de muestra para llevar a cabo los análisis en el Acelerador Espectrómetro de Masas (AMS) de forma adecuada, mientras que si aplicamos el 36Cl conviene realizar un análisis geoquímico previo de las rocas para estimar la cantidad de 35Cl y recolectar las muestras en superficies con un aspecto regular y en buen estado de conservación. Ambos aspectos son esenciales dado que la producción de 36Cl a partir de la captura de neutrones de baja energía (termales y epitermales) por el 35Cl todavía no está definida con precisión.
Citas
Aciego, M.S., De Paolo, D.J., Kennedy, B.M., Lamb, M.P., Sims, K.W., Dietrich, E. (2007). Combining (3He) cosmogenic dating with U-Th/He eruption ages using olivine in basalt. Earth and Planetary Science Letters, 254, 288–302. https://doi.org/10.1016/j.epsl.2006.11.039
Alcalá-Reygosa, J., Palacios, D., Schimmelpfennig, I., Vázquez-Selem, L., García-Sancho, L., Franco-Ramos, O., Villanueva, J., Zamorano, J. J., Aster Team (Aumaitre, G., Bourlès, D., Keddadouche, K.). (2018a). Dating late Holocene lava flows in Pico de Orizaba (Mexico) by means of in situ-produced cosmogenic 36Cl, lichenometry and dendrochronology. Quaternary Geochronology, 47, 93-106. https://doi.org/10.1016/j.quageo.2018.05.011
Alcalá-Reygosa, J., Arce, J. L., Schimmelpfennig, I., Salinas, E. M., Rodríguez, M. C., Léanni, L., Aster Team (Aumaitre, G., Bourlès, D., Keddadouche, K.). (2018b). Revisiting the age of the Jumento volcano, Chichinautzin Volcanic Field (Central Mexico), using in situ-produced cosmogenic 10Be. Journal of Volcanology and Geothermal Research 366, 112-119. https://doi.org/10.1016/j.jvolgeores.2018.10.005
Alcalá-Reygosa, J., Arce, J. L., Macías, J.L., Schimmelpfennig, I., Saucedo, R., Sánchez, J. M., Carlón, T., Vazquez, R., Cisneros-Máximo, G., Jímenez, A., Fernández, S., ASTER Team (Aumaitre, G., Bourlès, D., Keddadouche, K.). (2021). New chronological constraints on intense Holocene eruptions and landslide activity at Tacaná volcanic complex (Mexico). Quaternary Geochronology, 65, 101183. https://doi.org/10.1016/j.quageo.2021.101183
Arce, J. L., Macías, J. L., Vázquez-Selem, L. (2003). The 10.5 ka Plinian eruption of Nevado de Toluca, Mexico: stratigraphy and hazard implications. Geological Society of America Bulletin, 115, 230-248. https://doi.org/10.1130/0016-7606(2003)115<0230:TKPEON>2.0.CO;2
Arce, J. L., Macías, J. L., Gardner, J.E., Rangel, E. (2012). Reconstruction of the Sibinal Pumice, an andesitic Plinian eruption at Tacaná Volcanic Complex, Mexico-Guatemala. Journal of Volcanology and Geothermal Research, 217-218, 39-55. https://doi.org/10.1016/j.jvolgeores.2011.12.013
Arce, J.L., Walker, J., Keppie, J. D. (2015). Petrology and geochemistry of El Chichón and Tacaná: two active, yet contrasting Mexican volcanoes. In: Active Volcanoes of Chiapas (Mexico): El Chichón and Tacaná. Edited by T. Scolamacchia and J.L. Macías. Springer-Verlag, 25-43 p. https://doi:10.1007/978-3-642-25890-9_2
Arnold, M., Merchel, S., Bourles, D., Braucher, R., Benedetti, L., Finkel, R. C, Aumaître, G., Gottdang, A., Klein, M. (2010). The French accelerator mass spectrometry facility ASTER: improved performance and developments Nuclear Instruments and Methods Physical Research, Section B, 268, 1954-1959. https://doi.org/10.1016/j.nimb.2010.02.107
Arnold, M., Aumaitre, G., Bourlès, D., Keddadouche, K., Braucher, R., Finkel, R. C., Nottoli, E., Benedetti, L., Merchel, S. (2013). The French accelerator mass spectrometry facility ASTER after 4 years: status and recent developments on 36Cl and 129I. Nuclear Instruments and Methods in Physical Research, 294, 24-28. https://doi.org/10.1016/j.nimb.2012.01.049
Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J. (2008). A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology, 3, 174–195. https://doi.org/10.1016/j.quageo.2007.12.001
Braucher, R., Guillou, V., Bourles, D., Arnold, M., Aumaître, G., Keddadouche, K., Nottoli, E. (2015). Preparation of ASTER in-house 10Be/9Be standard solutions. Nuclear Instruments and Methods Physical Research Sect. B, 361, 335-340. https://doi.org/10.1016/j.nimb.2015.06.012
Brown, E.T., Edmond, J.M., Raisbeck, G.M., Yiou, F., Kurz, M.D., Brook, E.J. (1991). Examination of surface exposure ages of Antarctic moraines using in-situ produced 10Be and 26Al. Geochimica et Cosmochimica Acta, 55, 2269–2283. https://doi.org/10.1016/0016-7037(91)90103-C
Calvert, A.T., Moore, R.B., McGeehin, J.P., Rodrigues da Silva, A.M. (2006). Volcanic history and 40Ar/39Ar geochronology of Terceira island, azores, Portugal. Journal of Volcanology and Geothermal Research, 156, 103–115. https://doi.org/10.1016/j.jvolgeores.2006.03.016
Chmeleff, J., von Blanckenburg, F., Kossert, K., Jakob, J. (2010). Determination of the 10Behalf-life by multicollector ICP-MS and liquid scintillation counting. Nuclear Instruments and Methods Physical Research Sect. B, 268 (2), 192–199. https://doi.org/10.1016/j.nimb.2009.09.012
Conway, C.E., Townsend, D.B., Leonard, G.S., Wilson, C.J.N., Calvert, A.T., Gamble, J.A. (2015). Lava-ice interaction on a large composite volcano: a case study from Ruapehu, New Zealand. Bulletin of Volcanology, 77, 21. https://doi.org/10.1007/s00445-015-0906-2
Delunel, R., Bourlès, D.L., Van der Beek, P.A., Schlunegger, F., Leya, I., Masarik, J., Paquet, E. (2014). Snow shielding factors for cosmogenic nuclide dating inferred from long-term neutron detector monitoring. Quaternary Geochronology, 24, 16–26. https://doi.org/10.1016/j.quageo.2014.07.003
Dunai, T.J. (2010). Cosmogenic nuclides. Principles, Concepts and Applications in the Earth Surface Sciences. Cambridge University Press, 198 pp. https://doi.org/10.1017/CBO9780511804519
Dunai, T.J., Binnie, S.A., Hein, A.S., Paling, S.M. (2014). The effects of a hydrogen-rich ground cover on cosmogenic termal neutrons: implications for exposure dating. Quaternary Geochronology, 22, 183–191. https://doi.org/10.1016/j.quageo.2013.01.001
Ferrari, F., Orozco-Esquivel, T., Manea, V., Manea, M. (2012). The dynamic history of the Trans Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics, 522-523, 122-149. https://doi.org/10.1016/j.tecto.2011.09.018
Fink, D., Vogt, S., Hotchkis, M. (2000). Cross-sections for 36Cl from Ti at Ep =35–150 MeV: applications to in-situ exposure dating. Nuclear Instruments and Methods in Physical Research Section B Beam Interaction Mater and Atoms 172, 861-866. https://doi.org/10.1016/S0168-583X(00)00200-7
García-Palomo, A., Macías, J.L., Arce, J.L., Mora, J.C., Hughes, S., Saucedo, R., Espíndola, J.M., Escobar, R., Layer, P. (2006). Geological evolution of the Tacaná Volcanic Complex, México-Guatemala. In: Rose WI, Bluth GJS, Carr MJ, Ewert JW, Patino LC, Vallance JW (eds) Natural Hazards in Central America. Boulder, Colorado. Geological Society of America, Special Paper 412, 39-57. https://doi.org/10.1130/2006.2412(03)
Garduño, V.H., Macías, J.L., Molina, R. (2015). Geodynamic setting and pre-volcanic geology of active volcanism in Chiapas. In: Active Volcanoes of Chiapas (México): El Chichón and Tacaná. Edited by T. Scolamacchia and J.L. Macías. Springer Verlag, 1- 24. https://doi.org/10.1007/978-3-642-25890-9_1
Germa, A., Quidelleur, X., Gillot, P. Y., Tchilinguirian, P. (2010). Volcanic evolution of the black arc Pleistocene Payun Matru volcanic field (Argentina). Journal of South American Earth Sciences 29, 717-730. https://doi.org/10.1016/j.jsames.2010.01.002
Guilbaud, M. N., Alcalá-Reygosa, J., Schimmelpfennig, I., Arce, J. L., Aster Team (Aumaitre, G., Bourlès, D., Keddadouche, K.). (2022). Testing less-conventional methods to date a late-pleistocene to Holocene eruption: Radiocarbon dating of paleosols and 36Cl exposure ages at Pelado volcano, Sierra Chichinautzin, Central Mexico. Quaternary Geochronology, 68, 101 252. https://doi.org/10.1016/j.quageo.2022.101252
Heineke, C., Niedermann, S., Hetzel, R., Akal, C. (2016). Surface exposure dating of Holocene basalt flows and cinder cones in the Kula volcanic field (Western Turkey) using cosmogenic 3He and 10Be. Quaternary Geochronology 34, 81-91. https://doi.org/10.1016/j.quageo.2016.04.004
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U. C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., Von Gostomski Lierse, Ch., Kossert, K., Maitia, M., Poutivtsev, M., Remmert, A. (2010). A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods Physical Research Section B, 268 (2), 187-191. https://doi.org/10.1016/j.nimb.2009.09.020
Lal, D. (1991). Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424-439. https://doi.org/10.1016/0012-821X(91)90220-C
Limón-Hernández, C. G. (2011). Estratigrafía y morfología de los flujos de lava y depósitos asociados a la actividad efusiva del volcán Tacaná, México-Guatemala. Master thesis, Posgrado en Ciencias de la Tierra UNAM, México, 125 p.
Macías J. L, Espíndola J. M, García-Palomo A, Scott K. M, Hughes S, Mora J. C. (2000). Late Holocene Peléan style eruption at Tacaná Volcano, Mexico-Guatemala: Past, present, and future hazards. Bulleting Geological Society of America, 112, 1234-1249. https://doi.org/10.1130/00167606(2000)112<1234:LHPEAT>2.0.CO;2
Macías, J.L., Arce, J.L., García-Palomo, A., Mora, J.C., Layer, P.W., Espíndola, J.M. (2010). Late-Pleistocene flank collapse triggered by dome growth at Tacaná Volcano, México-Guatemala, and its relationship to the regional stress regime. Bulletin of Volcanology, 72, 33-53. https://doi.org/10.1007/s00445-009-0303-9
Macías, J.L., Arce, J.L., Layer, P.W., Saucedo, R., Mora, J.C. (2015). Eruptive history of the Tacaná Volcanic Complex. In: Scholamacchia T, Macías JL (Eds.) Active Volcanoes of Chiapas (Mexico) El Chichón and Tacaná, Active Volcanoes of the world, Springer Verlag, pp. 115-138. https://doi.org/10.1007/978-3-642-25890-9_6
Márquez, A., Verma, S.P., Anguita, F., Oyarzun, R., Brandle, J.L. (1999). Tectonics and volcanism of Sierra Chichinautzin: extension at the front of the Central Trans-Mexican Volcanic Belt. Journal of Volcanology and Geothermal Research, 93, 125-150. https://doi.org/10.1016/S0377-0273(99)00085-2
Marrero, S. M., Phillips, F. M., Caffee, M. W., Gosse, J. C. (2016). CRONUS-Earth cosmogenic 36Cl calibration. Quaternary Geochronology 31, 199-219. https://doi.org/10.1016/j.quageo.2015.10.002
Martin, L., Blard, P. H., Balco, G., Lave, J., Delunel, R., Lifton, N., Laurent, V. (2017). The CREp program and the ICE-D production rate calibration database: a fully parameterizable and updated online tool to compute cosmic-ray exposure ages. Quaternary Geochronology, 38, 25-49. https://doi.org/10.1016/j.quageo.2016.11.006
Masarik, j., Kim, K. J., Reedy, R.C. (2007). Numerical simulations of in situ production of terrestrial cosmogenic nuclides. Nuclear Instruments and Methods Physical Research Section B. Mater, 259, 642-645. https://doi.org/10.1016/j.nimb.2007.03.003
Merchel, S., Herpers, U. (1999). An update on radiochemical separation techniques for the determination of long-lived radionuclides via Accelerator Mass Spectrometry. Radiochimica Acta, 84 (1999), pp. 215-219. https://doi.org/10.1524/ract.1999.84.4.215
Merchel, S., Arnold, M., Aumaître, G., Benedetti, L., Bourlès, D.L., Braucher, R., Alfimov, V., Freeman, S.P.H.T., Wallner, A. (2008). Towards more precise 10Be and 36Cl data from measurements at the 10−14 level: influence of sample preparation. Nuclear Instruments and Methods Physical Research Section B, 266, 4921-4926. https://doi.org/10.1016/j.nimb.2008.07.031
Merchel, S., Bremser, W., Alfimov, V., Arnold, M., Aumaître, G., Benedetti, L., Bourlès, D.L., Caffee, M., Fifield, L. K., Finkel, R. C., Freeman, S. P. H. T., Martschini, M., Matsushi, Y., Rood, D. H., Sasa, K., Steier, P., Takahashi, T., Tamari, M., Tims, S. G., Tosaki, Y., Wilcken, K. M., Xu, S. (2011). Ultra-trace analysis of 36Cl by accelerator mass spectrometry: an interlaboratory. Analytical and Bioanalytical Chemistry. https://doi.org/10.1007/s00216-011-4979-2
Meriggi, L., Macías, J. L., Tommasini, S., Capra, L., Conticelli, S. (2008). Heterogeneous magmas of the Quaternary Sierra Chichinautzin volcanic field (central Mexico): the role of an amphibole-bearing mantle and magmatic evolution processes. Revista Mexicana de Ciencias Geológicas, 25, 197-216.
Muscheler, R., Beer, J., Kubik, P. W., Synal, H. A. (2005). Geomagnetic field intensity during the last 60,000 years based on 10Be and 36Cl from the Summit ice cores and 14C. Quaternary Science Reviews, 24, 1849-1860. https://doi.org/10.1016/j.quascirev.2005.01.012
Nishiizumi, K., Winterer, E.L., Kohl, C.P., Klein, J., Middleton, R., Lal, D., Arnold, J.R. (1989). Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks. Journal of Geophysical Research, 94, Article 17907. https://doi.org/10.1029/JB094iB12p17907
N.O.A.A, 1976. U.S. Standard Atmosphere. US Gov. Print. Off.
Renne, P.R. (2000). K-ar and 40Ar/39Ar Dating. Quaternary Geochronology: Methods and Applications. American Geophysical Union.
Rouwet, D., Taran, Y., Inguaggiato, S., Varley, N. (2004). Hydrothermal activity at Tacaná volcano, Mexico–Guatemala. In: Wanty R, Seal R II (eds) WRI-11. Taylor and Francis Group, London, 173–176.
Rouwet, D., Inguaggiato, S., Taran, Y., Varley, N., Santiago, J.A. (2009). Chemical and isotopic compositions of thermal springs, fumaroles and bubbling gases at Tacaná Volcano (Mexico-Guatemala): implications for volcanic surveillance. Bulletin of Volcanolology, 71, 319-335. https://doi.org/10.1007/s00445-008-0226-x
Schimmelpfennig, I. (2009). Cosmogenic 36Cl in Ca and K Rich Minerals: Analytical Developments, Production Rate Calibrations and Cross Calibration with 3He and 21Ne. Ph.D. Thesis. Paul Cezanne Aix-Marseille III University, Aix en Provence, France.
Schimmelpfennig, I., Benedetti, L., Finkel, R., Pik, R., Blard, P.H., Bourle, D., Burnard, P., Williams, A. (2009). Sources of in-situ 36Cl in basaltic rocks. Implications for cali- bration of production rates. Quaternary Geochronology, 4, 441–461. https://doi.org/10.1016/j.quageo.2009.06.003
Schimmelpfennig, I., Benedetti, L., Garreta, V., Pik, R., Blard, P.H., Burnard, P., Bourlès, D., Finkel, R., Ammon, K., Dunai, T. (2011). Calibration of cosmogenic 36Cl production rates from Ca and K spallation in lava flows from Mt. Etna (38ºN, Italy) and Payun Matru (36ºS, Argentina). Geochimica et Cosmochimica Acta, 75, 2611–2632. https://doi.org/10.1016/j.gca.2011.02.013
Schimmelpfennig, I., Schaefer, J.M., Akcar, N., Koffman, T., Ivy-Ochs, S., Schwartz, R., Finkel, R.C., Zimmerman, S., Schlüchter, C. (2014). A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, Central Alps, Switzerland, based on high-sensitivity beryllium-10 moraine dating. Earth and Planetary Science Letters, 393, 220–230. https://doi.org/10.1016/j.epsl.2014.02.046
Siebe, C. (2000). Age and archaeological implications of Xitle volcano, southwestern Basin of Mexico-City. Journal of Volcanology and Geothermal Research, 104 (1–4), 45–64. https://doi.org/10.1016/S0377-0273(00)00199-2
Siebe, C., Rodríguez-Lara, V., Schaaf, P., Abrams, M. (2004). Radiocarbon ages of Holocene Pelado, Guespalapa, and Chichinautzin scoria cones, south of Mexico City: implications for archeology and future hazards. Bulletin of Volcanology, 66, 203–225. https://doi.org/10.1007/s00445-003-0304-z
Stone, J. (2000). Air pressure and cosmogenic isotope production. Journal of Geophysical Research, 105, 23,753-23,759. https://doi.org/10.1029/2000JB900181
Stone, J.O., Fifield, K., Vasconcelos, P. (2005). Terrestrial chlorine-36 production from spallation of iron. In: 10th International Conference on Accelerator Mass Spectrometry, Berkeley, USA.
Straub, S. M., Gómez-Tuena, A., Zellmer, G.F., Espinasa-Perena, R., Stuart, F.M., Cai, M.Y., Langmuir, C.H., Martin Del Pozzo, A.L., Mesko, G.T. (2013). The processes of melt differentiation in arc volcanic rocks: Insights from OIB-type arc magmas in Central Mexican Volcanic Belt. Journal of Petrology, 54, 665-701. https://doi.org/10.1093/petrology/egs081
Uppala, S.M., Kallberg, P.W., Simmons, A.J., Andrae, U., Bechtold, V.D.C., Fiorino, M., Gibson, J.K., Haseler, J., Hernandez, A., Kelly, G.A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R.P., Andersson, E., Arpe, K., Balmaseda, M.A., Beljaars, A.C.M., Van De Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Ho_lm, E., Hoskins, B.J., Isaksen, L., Janssen, P.A.E.M., Jenne, R., Mcnally, A.P., Mahfouf, J.-F., Morcrette, J.- J., Rayner, N.A., Saunders, R.W., Simon, P., Sterl, A., Trenberth, K.E., Untch, A., Vasiljevic, D., Viterbo, P., Woollen, J. (2005). The ERA-40 Re-analysis. vol. 131. Quartely Journal of the Royal Meteorological Society, 2961–3012. https://doi.org/10.1256/qj.04.176
Vázquez-Selem, L., Heine, K. (2011). Late quaternary glaciation in Mexico. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations - Extent and Chronology. A Closer Look. Elsevier, Amsterdam, pp. 849–861. http://doi.org/10.1016/B978-0- 444-53447-7.00061-1
Vermeesch, P. (2007). CosmoCalc: an excel add-in for cosmogenic nuclide calculations. G- cubed 8, 1525-2027. https://doi.org/10.1029/2006GC001530
Walker M, Johnsen S, Rasmussen SO, et al. 2008. The Global Stratotype Section and Point (GSSP) for the base of the Holocene Series/Epoch (Quaternary System/Period) in the NGRIP ice core. Episodes 31: 264-267. https://doi.org/10.18814/epiiugs/2008/v31i2/016
Wallace, P. J., Carmichael, I. (1999). Quaternary volcanism near the Valley of Mexico: implications for subduction zone magmatism and the effects of crustal thickness variations on primitive magma compositions. Contribution to Mineralogy and Petrology, 135, 291-314. https://doi.org/10.1007/s004100050513
Wijbrans, J., Schneider, B., Kuiper, K., Calvari, S., Branca, S., De Beni, E., Norini, G., Corsaro, R. A., Miraglia, L. (2011). 40Ar/39Ar geochronology of Holocene basalts; examples from Stromboli, Italy. Quaternary Geochronology, 6, 223-232. https://doi.org/10.1016/j.quageo.2010.10.003
Zreda, M.G., Phillips, F.M., Kubik, P.W., Sharma, P., Elmore, D. (1993). Cosmogenic Cl dating of a young basaltic eruption complex, Lathrop Wells, Nevada. Geology, 21, 57-60. https://doi.org/10.1130/0091-7613(1993)021<0057:CCDOAY>2.3.CO;2
Zweck, C., Zreda, M., Desilets, D. (2013). Snow shielding factors for cosmogenic nuclide dating inferred from Monte Carlo neutron transport simulations. Earth and Planetary Science Letters, 379, 64-71. https://doi.org/10.1016/j.epsl.2013.07.023