La micropaleontología como herramienta de datación e identificación de eventos climáticos en registros sedimentarios marinos

Autores/as

DOI:

https://doi.org/10.17735/cyg.v36i3-4.94120

Palabras clave:

eventoestratigrafía; foraminíferos planctónicos; testigos de hielo; temperatura; δ18O

Resumen

Los microfósiles son una herramienta excepcional para hacer reconstrucciones climáticas y oceanográficas en sedimentos marinos debido a su alta abundancia, y a que muchos grupos permiten hacer estudios geoquímicos, especialmente los que presentan conchas de carbonato cálcico. En particular, las asociaciones de foraminíferos planctónicos han sido ampliamente utilizadas en ese sentido, ya que en el océano actual la distribución de las diferentes especies está íntimamente ligada a las condiciones climáticas y oceanográficas. La rápida respuesta de este grupo de microorganismos a los cambios climáticos nos permite utilizarlos para identificar eventos climáticos en un registro sedimentario y asociar esos eventos a sus equivalentes en registros de referencia bien datados. Esta práctica se conoce como eventoestratigrafía y nos permite obtener dataciones precisas y que pueden llegar a tener una resolución muy alta, por ejemplo, cuando se compara con los registros de los testigos de hielo de Groenlandia. Además, los análisis geoquímicos realizados en conchas de foraminíferos, como los isótopos de oxígeno (δ18O), también nos sirven para realizar eventoestratigrafía a diferentes escalas temporales. En este artículo, mostramos varios ejemplos de cómo se ha reconstruido el marco cronológico en secuencias sedimentarias marinas cercanas a la península ibérica a partir de abundancias relativas de foraminíferos planctónicos, paleotemperatura, o δ18O comparando los eventos climáticos del testigo de sedimento marino con los de un registro de referencia.

Citas

Ahn, S., Khider, D., Lisiecki, L.E., Lawrence, C.E. (2017). A probabilistic Pliocene–Pleistocene stack of benthic δ18O using a profile hidden Markov model. Dynamics and Statistics of the Climate System 2 (1), dzx002. https://doi.org/10.1093/climsys/dzx002.

Alonso García, M. (2011). Cambios climáticos a escala orbital y milenaria en el Atlántico norte entre 800.000 y 400.000 años [Tesis doctoral, Universidad de Salamanca]. Repositorio documental Gredos. http://hdl.handle.net/10366/83196. https://doi.org/10.14201/gredos.83196.

Alonso-Garcia, M., Sierro, F.J., Flores, J.A. (2011a). Arctic front shifts in the subpolar North Atlantic during the Mid-Pleistocene (800–400 ka) and their implications for ocean circulation. Palaeogeog. Palaeoclimatol. Palaeoecol. 311, 268-280. https://doi.org/10.1016/j.palaeo.2011.09.004.

Alonso-Garcia, M., Sierro, F.J., Kucera, M., Flores, J.A., Cacho, I., Andersen, N. (2011b). Ocean circulation, ice sheet growth and interhemispheric coupling of millennial climate variability during the mid-Pleistocene (ca 800–400 ka). Quaternary Science Reviews, 30, 3234-3247. https://doi.org/10.1016/j.quascirev.2011.08.005.

Austin, W.E.N., Hibbert, F.D. (2012). Tracing time in the ocean: a brief review of chronological constraints (60–8 kyr) on North Atlantic marine event-based stratigraphies. Quaternary Science Reviews, 36, 28-37. https://doi.org/10.1016/j.quascirev.2012.01.015.

Azibeiro, L.A., Sierro, F.J., Capotondi, L., Lirer, F., Andersen, N., González-Lanchas, A., Alonso-Garcia, M., Flores, J.-A., Cortina, A., Grimalt, J.O., Martrat, B., Cacho, I. (2021). Meltwater flux from northern ice-sheets to the mediterranean during MIS 12. Quaternary Science Reviews, 268, 107108. https://doi.org/10.1016/j.quascirev.2021.107108.

Barker, S., Knorr, G., Edwards, R.L., Parrenin, F., Putnam, A.E., Skinner, L.C., Wolff, E., Ziegler, M. (2011). 800,000 Years of Abrupt Climate Variability. Science 334, 347-351. https://doi.org/10.1126/science.1203580.

Barker, S., Knorr, G., Conn, S., Lordsmith, S., Newman, D., Thornalley, D. (2019). Early Interglacial Legacy of Deglacial Climate Instability. Paleoceanography and Paleoclimatology 34, 1455-1475. https://doi.org/10.1029/2019PA003661.

Bond, G.C., Lotti, R. (1995). Iceberg Discharges into the North Atlantic on Millennial Time Scales During the Last Glaciation. Science 267, 1005-1010. https://doi.org/10.1126/science.267.5200.1005.

Cacho, I., Grimalt, J.O., Pelejero, C., Canals, M., Sierro, F.J., Flores, J.A., Shackleton, N. (1999). Dansgaard-Oeschger and Heinrich Event Imprints in Alboran Sea Paleotemperatures. Paleoceanography 14, 698-705. https://doi.org/10.1029/1999PA900044.

Candy, I., Alonso-Garcia, M. (2018). A 1 Ma sea surface temperature record from the North Atlantic and its implications for the early human occupation of Britain. Quaternary Research, 90, 406-417. https://doi.org/10.1017/qua.2018.62.

Cayre, O., Lancelot, Y., Vincent, E., Hall, M.A. (1999). Paleoceanographic reconstructions from planktonic foraminifera off the Iberian Margin: Temperature, salinity, and Heinrich events. Paleoceanography 14, 384-396. https://doi.org/10.1029/1998PA900027.

Cheng, H., Edwards, R.L., Sinha, A., Spötl, C., Yi, L., Chen, S., Kelly, M., Kathayat, G., Wang, X., Li, X., Kong, X., Wang, Y., Ning, Y., Zhang, H. (2016). The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640-646. https://doi.org/10.1038/nature18591.

Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16(4), 436-468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x.

Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218-220. https://doi.org/10.1038/364218a0 .

de Abreu, L., Shackleton, N.J., Schönfeld, J., Hall, M., Chapman, M. (2003). Millennial-scale oceanic climate variability off the Western Iberian margin during the last two glacial periods. Marine Geology, 196, 1-20. https://doi.org/10.1016/S0025-3227(03)00046-X.

Emiliani, C. (1955). Pleistocene Temperatures. The Journal of Geology 63, 538-578. https://doi.org/10.1086/626295.

Eynaud, F., de Abreu, L., Voelker, A., Schönfeld, J., Salgueiro, E., Turon, J.-L., Penaud, A., Toucanne, S., Naughton, F., Sánchez Goñi, M.F., Malaizé, B., Cacho, I. (2009). Position of the Polar Front along the western Iberian margin during key cold episodes of the last 45 ka. Geochemistry Geophysics Geosystems, 10, Q07U05. https://doi.org/10.1029/2009GC002398.

Hernández-Almeida, I., Sierro, F.J., Cacho, I., Flores, J.A. (2012). Impact of suborbital climate changes in the North Atlantic on ice sheet dynamics at the Mid-Pleistocene Transition. Paleoceanography, 27, PA3214. https://doi.org/10.1029/2011PA002209.

Hodell, D.A., Channell, J.E.T., Curtis, J.H., Romero, O.E., Röhl, U. (2008). Onset of "Hudson Strait" Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (~640 ka)? Paleoceanography 23, PA4218. https://doi.org/10.1029/2008PA001591.

Hodell, D., Lourens, L., Crowhurst, S., Konijnendijk, T., Tjallingii, R., Jiménez-Espejo, F., Skinner, L., Tzedakis, P.C., Abrantes, F., Acton, G.D., Alvarez Zarikian, C.A., Bahr, A., Balestra, B., Barranco, E.L., Carrara, G., Ducassou, E., Flood, R.D., Flores, J.-A., Furota, S., Grimalt, J., Grunert, P., Hernández-Molina, J., Kim, J.K., Krissek, L.A., Kuroda, J., Li, B., Lofi, J., Margari, V., Martrat, B., Miller, M.D., Nanayama, F., Nishida, N., Richter, C., Rodrigues, T., Rodríguez-Tovar, F.J., Roque, A.C.F., Sanchez Goñi, M.F., Sierro Sánchez, F.J., Singh, A.D., Sloss, C.R., Stow, D.A.V., Takashimizu, Y., Tzanova, A., Voelker, A., Xuan, C., Williams, T. (2015). A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin. Global and Planetary Change 133, 49-64. https://doi.org/10.1016/j.gloplacha.2015.07.002.

Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., Shackleton, N.J. (1984). The orbital theory of Pleistocene climate: support from a revised chronology of the δ 18O record. En: A. Berger, J.I., H. Hays, G. Kukla, and B. Saltzman (Ed.), Milankovitch and Climate: Understanding the Response to Astronomical Forcing. D. Reidel Publishing, Dordrecht, pp. 269-305.

Johnsen, S.J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J.P., Clausen, H.B., Miller, H., Masson-Delmotte, V., Sveinbjörnsdottir, A.E. and White, J. (2001), Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journal of Quaternary Science, 16: 299-307. https://doi.org/10.1002/jqs.622.

Kotov S., Pälike H. (2018). QAnalySeries – a cross-platform time series tuning and analysis tool. En: AGU Fall Meeting Abstracts Vol. 2018, pp. PP53D-1230. https://doi.org/10.1002/essoar.10500226.1.

Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Weinelt, M., Chen, M.-T., Mix, A.C., Barrows, T.T., Cortijo, E., Duprat, J., Juggins, S., Waelbroeck, C. (2005). Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quaternary Science Reviews, 24, 951-998. https://doi.org/10.1016/j.quascirev.2004.07.014.

Lisiecki, L. E., and P. A. Lisiecki (2002). Application of dynamic programming to the correlation of paleoclimate records. Paleoceanography, 17(D4), 1049. https://doi.org/10.1029/2001PA000733.

Lisiecki, L.E., Raymo, M.E. (2005). A Pliocene-Pleistocene stack of globally distributed benthic δ18O records. Paleoceanography 20, PA1003. https://doi.org/10.1029/2004PA001071.

Martrat, B., Grimalt, J.O., Lopez-Martinez, C., Cacho, I., Sierro, F.J., Flores, J.A., Zahn, R., Canals, M., Curtis, J.H., Hodell, D.A. (2004). Abrupt Temperature Changes in the Western Mediterranean over the Past 250,000 Years. Science 306, 1762-1765. https://doi.org/10.1126/science.1101706.

Martrat, B., Grimalt, J.O., Shackleton, N.J., de Abreu, L., Hutterli, M.A., Stocker, T.F. (2007). Four Climate Cycles of Recurring Deep and Surface Water Destabilizations on the Iberian Margin. Science 317, 502-507. https://doi.org/10.1126/science.1139994.

Paillard, D., Labeyrie, L., Yiou, P. (1996). Macintosh program performs time-series analysis. Eos 77, 379. https://doi.org/10.1029/96EO00259.

Pérez-Folgado, M., Sierro, F.J., Flores, J.A., Cacho, I., Grimalt, J.O., Zahn, R., Shackleton, N. (2003). Western Mediterranean planktonic foraminifera events and millennial climatic variability during the last 70 kyr. Marine Micropaleontology, 48, 49-70. https://doi.org/10.1016/S0377-8398(02)00160-3.

Railsback, L.B., Gibbard, P.L., Head, M.J., Voarintsoa, N.R.G., Toucanne, S. (2015). An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews, 111, 94-106. https://doi.org/10.1016/j.quascirev.2015.01.012.

Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S.J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W.Z., Lowe, J.J., Pedro, J.B., Popp, T., Seierstad, I.K., Steffensen, J.P., Svensson, A.M., Vallelonga, P., Vinther, B.M., Walker, M.J.C., Wheatley, J.J., Winstrup, M. (2014). A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews, 106, 14-28. https://doi.org/10.1016/j.quascirev.2014.09.007.

Rodrigues, T., Alonso-García, M., Hodell, D.A., Rufino, M., Naughton, F., Grimalt, J.O., Voelker, A.H.L., Abrantes, F. (2017). A 1-Ma record of sea surface temperature and extreme cooling events in the North Atlantic: A perspective from the Iberian Margin. Quaternary Science Reviews, 172, 118-130. https://doi.org/10.1016/j.quascirev.2017.07.004.

Salgueiro, E., Voelker, A.H.L., de Abreu, L., Abrantes, F., Meggers, H., Wefer, G. (2010). Temperature and productivity changes off the western Iberian margin during the last 150 ky. Quaternary Science Reviews, 29, 680-695. https://doi.org/10.1016/j.quascirev.2009.11.013.

Salgueiro, E., Voelker, A.H.L., Martin, P.A., Rodrigues, T., Zúñiga, D., Froján, M., de la Granda, F., Villacieros-Robineau, N., Alonso-Pérez, F., Alberto, A., Rebotim, A., González-Álvarez, R., Castro, C.G., Abrantes, F. (2020). δ18O and Mg/Ca Thermometry in Planktonic Foraminifera: A Multiproxy Approach Toward Tracing Coastal Upwelling Dynamics. Paleoceanography and Paleoclimate ,35, e2019PA003726. https://doi.org/10.1029/2019PA003726.

Shackleton, N. (1967). Oxygen Isotope Analyses and Pleistocene Temperatures Re-assessed. Nature 215, 15-17. https://doi.org/10.1038/215015a0.

Shackleton, N.J., Hall, M.A., Vincent, E. (2000). Phase Relationships Between Millennial-Scale Events 64,000-24,000 Years Ago. Paleoceanography 15, 565-569. https://doi.org/10.1029/2000PA000513.

Sierro, F.J., Andersen, N., Bassetti, M.A., Berné, S., Canals, M., Curtis, J.H., Dennielou, B., Flores, J.A., Frigola, J., Gonzalez-Mora, B., Grimalt, J.O., Hodell, D.A., Jouet, G., Pérez-Folgado, M., Schneider, R. (2009). Phase relationship between sea level and abrupt climate change. Quaternary Science Reviews, 28, 2867-2881. https://doi.org/10.1016/j.quascirev.2009.07.019.

Skinner, L.C. (2008). Revisiting the absolute calibration of the Greenland ice-core age-scales. Climate of the Past 4, 295-302. https://doi.org/10.5194/cp-4-295-2008.

Westerhold, T., Marwan, N., Drury, A.J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J.S.K., Bohaty, S.M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D.A., Holbourn, A.E., Kroon, D., Lauretano, V., Littler, K., Lourens, L.J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R.H., Wilson, P.A., Zachos, J.C. (2020). An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369, 1383-1387. https://doi.org/10.1126/science.aba6853.

Descargas

Publicado

2022-12-15

Número

Sección

Artículos de Investigación