Aplicación de algoritmos Structure from Motion (SfM) para el análisis histórico de cambios en la geomorfología fluvial

  • Manel Llena Universidad de Lleida
  • Damià Vericat Universidad de Lleida
  • José Antonio Martínez Casasnovas Universidad de Lleida
Palabras clave: fotogrametría digital, SfM-MVS, análisis geomorfológico histórico, dinámica fluvial

Resumen

En el presente artículo se presenta el flujo de trabajo para la obtención de información espacial utilizada para el análisis de cambios geomorfológicos fluviales en el tramo alto del río Cinca (Pirineo Aragonés) durante el periodo comprendido entre el año 1927 y el año 2015. Los productos finales tras la aplicación de la metodología SfM-MVS son ortomosaicos, con un error medio cuadrático (RMSE) entre 0,5 y 1 m, y nubes de puntos con un RMSE entre 1 y 2 m. Los resultados indican que el tramo de estudio del Alto Cinca ha sufrido una fuerte reducción de la anchura activa del cauce (52 %) con un elevado proceso de incisión (e.g. >5 m en algunos puntos). Además, se observa una clara simplificación en el patrón del cauce (reducción del índice de multiplicidad de canales y paso de patrón multicanal a unicanal). Estos procesos están directamente influenciados por los impactos antrópicos asociados a las extracciones de áridos y a la construcción de escolleras (escala de tramo), y por los efectos sobre la producción y trasferencia de sedimentos (escala de cuenca) debido a los cambios en los usos del suelo a partir de la década de 1950 del siglo XX.

La metodología que se presenta en este trabajo es de gran utilidad para el diagnóstico del estado morfo-sedimentario de sistemas fluviales. En el caso particular del Alto Cinca, los resultados son de gran interés para la mejora de la comprensión de las relaciones causa-efecto en la dinámica morfo-sedimentaria observada para el período 1927-2015. Esta mejora puede ayudar a modificar los planes de gestión de cuenca mediante una visión más integral de los procesos contemporáneos.

Biografía del autor/a

Manel Llena, Universidad de Lleida

Grupo de Investigación de Dinámica Fluvial

Departamento de Medio Ambiente y Ciencias del Suelo

Estudiante de Doctorado

Damià Vericat, Universidad de Lleida

Grupo de Investigación de Dinámica Fluvial

Departamento de Medio Ambiente y Ciencias del Suelo

Investigador Ramón y Cajal

José Antonio Martínez Casasnovas, Universidad de Lleida

Grupo de Investigación en AgróTICa y Agricultura de Precisión

Departamento de Medio Ambiente y Ciencias del Suelo

Catedrático de Universidad

Citas

Arnaud, F.; Piégay, H.; Schmitt, L.; Rollet, a. J.; Ferrier, V.; Béal, D. (2015). Historical geomorphic analysis (1932–2011) of a by-passed river reach in process-based restoration perspectives: The Old Rhine downstream of the Kembs diversion dam (France, Germany). Geomorphology, 236, 163–177. https://doi.org/10.1016/j.geomorph.2015.02.009

Bakker, M.; Lane, S.N. (2016). Archival photogrammetric analysis of river-floodplain systems using Structure from Motion (SfM) methods. Earth Surface Processes and Landforms, 42, 1274–1286. https://doi.org/10.1002/esp.4085

Batalla, R. J.; Vericat, D.; Martínez, T. (2006). River-channel changes downstream from dams in the lower Ebro River. Zeitschrift für Geomorphologie, 143, 1-14.

Begueria, S.; López Moreno, J. I.; Gómez-Villar, A.; Rubio, V.; Lana-Renault, N.; García-Ruiz, J.M. (2006). Fluvial adjustments to soil erosion and plant cover changes in the Central Pyrenees. Geografiska Annaler, 88(A), 177-186. https://doi.org/10.1111/j.1468-0459.2006.00293.x

Béjar, M.; Gibbins, C. N.; Vericat, D.; Batalla, R.J. (2017). Effects of suspended sediment transport on invertebrate drift. River Research and Applications, 33, 1655-1666. https://doi.org/10.1002/rra.3146

Béjar, M.; Vericat, D.; Nogales, I.; Gallart, F.; Batalla, R.J. (2018). Efectos de las extracciones de áridos sobre el transporte de sedimentos en suspensión en ríos de montaña (alto río Cinca, Pirineo Central). Cuadernos de Investigación Geográfica, 44. https://doi.org/10.18172/cig.3256

Brasington, J.; Rumsby, B.T.; Mcvey, R.A. (2000). Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey. Earth Surface Processes and Landforms, 25, 973-990. https://doi.org/10.1002/1096-9837(200008)25:9<973::AID-ESP111>3.0.CO;2-Y

Brasington, J.; Vericat, D.; Rychkov I. (2012). Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning. Water Resources Research, 48, 1-18. https://doi.org/10.1029/2012WR012223

Calle, M.; Alho, P.; Benito, G. (2017). Channel dynamics and geomorphic resilience in an ephemeral Mediterranean river affected by gravel mining. Geomorphology, 285, 333-346. https://doi.org/10.1016/j.geomorph.2017.02.026

Carrivick, J.L.; Smith, M.W.; Quincey, D.J. (2016). Structure from Motion in the Geosciences, Wiley-Blackwell, 208 pp. https://doi.org/10.1002/9781118895818

Church, M.; Jones, D. (1982). Chanel bars in gravel bed rivers. In: Gravel bed rivers (R.D. Hey, J.C. Bayhurst, C. R. Thorne eds.), Wiley, 291-324.

Chuvieco, E. (1995). Fundamentos de teledetección espacial. Ed. Rialp, Madrid, 453 pp.

Clerici, A.; Perego, S.; Chelli, A.; Tellini, C. (2015). Morphological changes of the floodplain reach of the Taro River (Northern Italy) in the last two centuries. Journal of Hydrology, 527, 1106–1122. https://doi.org/10.1016/j.jhydrol.2015.05.063

Comiti, F.; Da Canal, M.; Surian, N.; Mao, L.; Picco, L.; Lenzi, M.A. (2011). Channel adjustments and vegetation cover dynamics in a large gravel bed river over the last 200 years. Geomorphology, 125, 147–159. https://doi.org/10.1016/j.geomorph.2010.09.011

Downs, P.W.; Dusterhoff, S.R.; Sears, W.A. (2013). Reach-scale channel sensitivity to multiple human activities and natural events: Lower Santa Clara River, California, USA. Geomorphology, 189, 121–134. https://doi.org/10.1016/j.geomorph.2013.01.023

Dugonjic, S.; Perani, J.; Ru, I.; Arbanas, Ž. (2016). Analysis of a historical landslide in the Rječina River Valley, Croatia. Geoenvironmental Disasters, 3, 1-9. https://doi.org/10.1186/s40677-016-0061-x

Eltner, A.; Schneider, D. (2015). Analysis of different methods for 3d reconstruction of natural surfaces from parallel-axes UAV images. The Photogrammetric Record, 30 (151), 279–299. https://doi.org/10.1111/phor.12115

Garcia-Ruiz, J.M.; Lasanta, T.; Ruiz-Flano, P.; Ortigosa, L.; White, S.; Gonzalez, C.; Martì, C. (1996). Land-use changes and sustainable development in mountain areas: a case study in the Spanish Pyrenees. Landscape Ecology, 11, 267–277. https://doi.org/10.1007/BF02059854

Germanoski, D.; Schumm, S.A. (1993). Changes in braided river morphology resulting from aggradation and degradation. Journal of Geology, 101, 451–466. https://doi.org/10.1086/648239

Gomez, C. (2014). Digital photogrammetry and GIS-based analysis of the bio-geomorphological evolution of Sakurajima Volcano, diachronic analysis from 1947 to 2006. Journal of Volcanology and Geothermal Research, 280, 1–13. https://doi.org/10.1016/j.jvolgeores.2014.04.015

Gomez, C.; Hayakawa, Y.; Obanawa, H. (2015). A study of Japanese Landscapes using Structure from Motion Derived DSMs and DEMs based on Historical Aerial Photographs: New Opportunities for Vegetation Monitoring and Diachronic Geomorphology. Geomorphology, 242, 11-20. https://doi.org/10.1016/j.geomorph.2015.02.021

Hong, L.B.; Davies, T.R.H. (1979). A study of stream braiding. Geological Society of America, 90, 1839–1859. https://doi.org/10.1130/GSAB-P2-90-1839

Hughes, M. L.; McDowell, P. F.; Marcus, W. A. (2006). Accuracy assessment of georectified aerial photographs: Implications for measuring lateral channel movement in a GIS. Geomorphology, 74, 1–16. https://doi.org/10.1016/j.geomorph.2005.07.001

Ibisate, A.; Díaz, E.; Ollero, A.; Acin, V.; Granado, D. (2013). Channel response to multiple damming in a meandering river, middle and lower Aragon River (Spain). Hydrobiologia, 712, 5–23. https://doi.org/10.1007/s10750-013-1490-0

Ishiguro, S.; Yamano, H.; Oguma, H. (2016). Geomorphology Evaluation of DSMs generated from multi-temporal aerial photographs using emerging structure from motion – multi-view stereo technology. Geomorphology, 268, 64–71. https://doi.org/10.1016/j.geomorph.2016.05.029

Lague, D.; Brodu, N.; Leroux, J. (2013). Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (NZ). ISPRS Journal of Photogrammetry and Remote Sensing, 82, 10–26. https://doi.org/10.1016/j.isprsjprs.2013.04.009

Lane, S.N.; Chandler, J.H.; Richards, K.S. (1994). Developments in Monitoring and Modeling Small-Scale River Bed Topography. Earth Surface Processes and Landforms, 19, 349-368. https://doi.org/10.1002/esp.3290190406

Lane, S.N.; Richards, K.S.; Chandler, J.H. (1996). Discharge and sediment supply controls on erosion and deposition in a dynamic alluvial channel. Geomorphology, 15, 1–15. https://doi.org/10.1016/0169-555X(95)00113-J

Latapie, A.; Camenen, B.; Rodrigues, S.; Paquier, A.; Bouchard, J.P.; Moatar, F. (2014). Assessing channel response of a long river influenced by human disturbance. Catena, 121, 1–12. https://doi.org/10.1016/j.catena.2014.04.017

Leys, K.; Werritty, A. (1999). River channel planform change: software for historical analysis, Geomorphology, 29, 107-120. https://doi.org/10.1016/S0169-555X(99)00009-4

Llena, M.; Cavalli, M.; Vericat, D.; Crema, S. (En revisión) Assesing changes on landscape associated to antrophic disturbances by means of the application of Structure from Motion photogrammetry using historical aerial imagery. Rendiconti Online Società Geologica Italiana.

Llena, M.; Vericat, D.; Smith, M.W. (En preparación). Morphological changes in a Piedmont river: The Upper Cinca reach (Southern Pyrenees).

Mertes, J.R.; Gulley, J.D.; Benn, D.I.; Thompson, S.S.; Nicholson, L.I. (2017). Using structure-from-motion to create glacier DEMs and orthoimagery from historical terrestrial and oblique aerial imagery. Earth Surface Processes and Landforms. 10.1002/esp.4188 https://doi.org/10.1002/esp.4188

Micheletti, N.; Chandler, J.H.; Lane, S.N. (2015a). Structure from Motion (SfM) Photogrammetry. Geomorphological Techniques (British Society for Geomorphology), 2, 1–12. http://geomorphology.org.uk/sites/default/files/geom_tech_chapters/2.2.2_sfm.pdf

Micheletti, N.; Lane, S.N.; Chandler, J.H. (2015b). Application of Archival Aerial Photogrammetry to Quantify Climate Forcing of Alpine Landscapes. The Photogrammetric Record, 30, 143-165. https://doi.org/10.1111/phor.12099

Midgley, N.G.; Tonkin, T.N. (2017). Geomorphology Reconstruction of former glacier surface topography from archive oblique aerial images. Geomorphology, 282, 18–26. https://doi.org/10.1016/j.geomorph.2017.01.008

Moretto, J.; Rigon, E.; Mao, L.; Picco, L.; Delai, F.; Lenzi, M.A. (2014). Channel adjustments and island dynamics in the Brenta River (Italy) over the last 30 years. River Research and Applications, 30, 719–732. https://doi.org/10.1002/rra.2676

Mosley, P.M. (1981). Semi-determinate hydraulic geometry of river channels, South Island, New Zealand. Earth Surface Processes and Landforms, 6, 127–137. https://doi.org/10.1002/esp.3290060206

Muñoz-Narciso, E.; Béjar, M.; Tena, A.; Vericat, D.; Ramos, E.; Brasington, J.; Gibbins, C.N.; Batalla, R.J. (2014). Generación de modelos topográficos a partir de fotogrametría digital automatizada en un río de gravas altamente dinámico. In: Avances de la Geomorfología en España 2012-2014. XIII Reunión Nacional de Geomorfología (Schnabel, S.; Gómez-Gutiérrez, A. Eds.). ISBN: 978-84-617-1123-9, Universidad de Extremadura, Cáceres, 335-338.

Passalacqua, P.; Belmont, P.; Staley, D.M.; Simley, J.D.; Arrowsmith, J.R.; Bode, C.A.; Crosby, C.; DeLong, S.B.; Glenn, N.F.; Kelly, S.A.; Lague, D.; Sangireddy, H.; Schaffrath, K.; Tarboton, D.G.; Wasklewicz, T.; Wheaton, J.M. (2015). Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: a review. Earth-Science Reviews, 148, 174–193. https://doi.org/10.1016/j.earscirev.2015.05.012

Sanchis-Ibor, C.; Segura-Beltrán, F.; Almonacid-Caballer, J. (2017). Channel forms recovery in an ephemeral river after gravel mining (Palancia River, Eastern Spain). Catena, 158, 357–370. https://doi.org/10.1016/j.catena.2017.07.012

Seitz, S.M.; Diebel, J.; Scharstein, D.; Szeliski, R. (2006). A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms. IEEE Computer Society Conference, 1, 519–528. https://doi.org/10.1109/CVPR.2006.19

Semyonov, D. (2011). Algorithms used in Photoscan [Msg 2]. Retrieved 3 May 2011. Message posted to www.agisoft.ru/forum/index.php?topic=89.0.

Smith, M.W.; Vericat, D. (2015). From experimental plots to experimental landscapes: topography, erosion and deposition in sub-humid badlands from Structure-from-Motion photogrammetry. Earth Surface Processes and Landforms, 40, 1656–1671. https://doi.org/10.1002/esp.3747

Smith, M.W.; Carrivick, J. L.; Quincey, D.J. (2016). Structure from motion photogrammetry in physical geography. Progress in Physical Geography, 40, 247–275. https://doi.org/10.1177/0309133315615805

Surian, N.; Ziliani, L.; Comiti, F.; Lenzi, M. A.; Mao, L. (2009). Channel adjustments and alteration of sediment fluxes in gravel-bed rivers of north-eastern Italy: potentials and limitations for channel recovery. River Research and Applications, 25, 551-567. https://doi.org/10.1002/rra.1231

Ullman, S., (1979). The interpretation of structure from motion. The Royal Society, London. 203, 405–442. https://doi.org/10.1098/rspb.1979.0006

Vericat, D.; Brasington, J.; Wheaton, J.; Cowie, M. (2009). Accuracy assessment of aerial photographs acquired using lighter-than-air blimps: low-cost tools for mapping river corridors. River Research and Applications, 25, 985–1000. https://doi.org/10.1002/rra.1198

Vericat, D.; Múñoz-Narciso, E.; Béjar, M.; Ramos-Madrona, E. (2016). Case study: Multitemporal reach-scale topographic models in a wandering river – uncertainties and opportunities. In: Structure from Motion in the Geosciencies. New Analytical Methods in the Earth Environmental Science (J. L. Carrivick, M. W. Smith, D. J. Quincey, eds.). Willey, 194 pp.

Vericat, D.; Wheaton, J.; Brasington, J. (2017). Revisiting the Morphological Approach: Opportunities and Challenges with Repeat High-Resolution Topography. In: Gravel-Bed Rivers: Processes and Disasters (D. T. Tsutsumi, J. B. Laronne, eds.). Wiley, 121-158. https://doi.org/10.1002/9781118971437.ch5

Vericat, D.; Batalla, R. J. (2016). Morfodinámica fluvial. In: Procesos hidrosedimentarios en medios fluviales (R.J. Batalla, A. Tena, eds.). Editorial Milenio, Lleida, 19-74.

Wackrow, R.; Chandler, J.H. (2008). A convergent image configuration for DEM extraction that minimises the systematic effects caused by an inaccurate lens model. The Photogrammetric Record, 23(121), 6–18. https://doi.org/10.1111/j.1477-9730.2008.00467.x

Warrick, J.A.; Ritchie, A.C.; Adelman, G.; Adelman, K.; Limber, W. (2017). New Techniques to Measure Cliff Change from Historical Oblique Aerial Photographs and Structure-from-Motion Photogrammetry. Journal of Coastal Research, 33, 39–55. https://doi.org/10.2112/JCOASTRES-D-16-00095.1

Westoby, M.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reyonds, M.J. (2012). Structure from Motion photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021

Wheaton, J.M.; Brasington, J.; Darby S.E.; Sear, D.A. (2010). Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surface Processes and Landforms, 35, 136-156. https://doi.org/10.1002/esp.1886

Williams, R.D. (2012). DEMs of Difference. Geomorphological Techniques (British Society for Geomorphology), 2, 1-17. http://eprints.gla.ac.uk/114527/1/Williams%202012%20DEMs%20of%20Difference.pdf

Williams, R.D.; Brasington, J.; Vericat, D.; Hicks, D.M. (2013). Hyperscale terrain modelling of braided rivers: Fusing mobile terrestrial laser scanning and optical bathymetric mapping. Earth Surface Processes and Landforms, 39, 167–183. https://doi.org/10.1002/esp.3437

Publicado
2018-06-25
Sección
Artículos de Investigación