En este artículo se hace un repaso del esfuerzo investigador llevado a cabo en las dos últimas décadas en el ámbito de la modelización numérica del cambio climático. En primer lugar, se describen brevemente las características de los modelos globales de circulación que reproducen la dinámica del clima, y que permiten simular su evolución futura en función de los forzamientos inducidos por actividades humanas (cambio en la composición de la atmósfera por emisión de CO2, etc.). Dichos forzamientos son conocidos como escenarios futuros de emisión y representan la fuente principal de incertidumbre para la modelización del cambio climático; por ello, se suele considerar un conjunto de escenarios que tratan de cubrir el espectro de las posibles situaciones futuras, más o menos optimistas, para realizar cualquier estudio de cambio climático. También se analiza la influencia de otras fuentes de incertidumbre, como los propios errores de los modelos (por ejemplo, la parametrización de procesos físicos no resueltos en la dinámica). Esta incertidumbre hace necesario abordar el problema del cambio climático desde un punto de vista probabilístico, utilizando nuevas técnicas basadas en la predicción por conjuntos para cuantificar la incertidumbre. Esta característica, unida al enorme coste computacional necesario para resolver numéricamente estos modelos, hace que la resolución espacial de los mismos sea aún bastante grosera (cientos de kilómetros). Por ello, en los últimos años se han desarrollado distintas estrategias para la proyección regional del cambio climático, que proporcionen mayor detalle en zonas para realizar estudios de impacto.