Respuesta cardiaca autónoma durante la recuperación utilizando vibración de cuerpo completo, después de una prueba de ejercicio cardiopulmonar máxima (Cardiac autonomic response during recovery using whole-body vibration after maximal cardiopulmonary exer

Autores/as

  • Jorge Olivares Arancibia Physical Education School, Faculty of Education, Universidad de las Américas, Santiago, Chile
  • Patricio Solis-Urra Faculty of Education and Social Sciences, Universidad Andrés Bello, Viña del Mar, Chile
  • Felipe Porras-López IRyS Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso
  • Inti Federeci-Díaz IRyS Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso
  • Fernando Rodríguez-Rodríguez IRyS Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso
  • Juan Pablo Zavala Faculty of Education and Social Sciences, Universidad Andrés Bello, Viña del Mar, Chile
  • Carlos Cristi-Montero IRyS Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso

DOI:

https://doi.org/10.47197/retos.v42i0.82484

Palabras clave:

Plataforma vibratoria, recuperación activa, recuperación pasiva, frecuencia cardíaca, variabilidad de la frecuencia cardíaca, respuesta cardíaca autónoma, prueba incremental máxima., ( Vibrating Platform, Active and Passive Recovery, Heart Rate Variability, University runners, Physical education student)

Resumen

En los últimos años la respuesta nerviosa y cardiovascular al ejercicio ha adquirido una relevancia importante, tanto en el ámbito del deporte como de la salud. Por tanto, la aceleración de la recuperación cardiovascular parece desempeñar un papel clave en varios campos. El objetivo del estudio es analizar y comparar el efecto agudo de la vibración de cuerpo completo (VCC), en la respuesta cardíaca autónoma después del ejercicio máximo en corredores universitarios (CU) y estudiantes de educación física (EEF). Veinte hombres participaron en un estudio cruzado, 10 CU y 10 EEF con edades entre 18 y 24 años. En cada evaluación, se realizó una prueba cardiopulmonar incremental seguida de (i) tiempo de recuperación activa usando VCC (25 Hz y desplazamiento máx. de cuatro mm) y (ii) período de recuperación pasiva (sin VCC; 0 Hz — 0 mm), separados por siete días. La recuperación activa consistió en un minuto sentado usando WBV y un minuto sin WBV seis veces (12 min), más cinco minutos de recuperación pasiva; la recuperación pasiva y esta consistió en 17 minutos sentado en plataforma sin vibración. La recuperación activa tuvo diferencias significativas en comparación con recuperación pasiva (p <0.05). Además, en recuperación activa, EEF tuvo una mejor respuesta de frecuencia cardíaca que el grupo CU, sin embargo, los resultados no fueron significativos. Por último, no se logró establecer una relación clara entre los componentes lineales de la variabilidad del ritmo cardiaco (VRC) en nuestros resultados. La VCC tiene un efecto positivo en la recuperación de los sujetos, sin embargo, es necesario establecer protocolos sobre las intensidades y tiempo adecuado para permitir acelerar la recuperación de la reactividad parasimpática, por esa razón aún no se puede concluir claramente respecto al mejor protocolo VVC dependiendo de la característica del sujeto.

Abstract. In the last years the nervous and cardiovascular response to exercise has taken on an important relevance, both in sport and health field. In this line, accelerating cardiovascular appears to play a key role in various sports fields. The study aims to examine and compare the acute effect of whole-body vibration (WBV) on cardiac autonomic response after maximal exercise in university runners and physical education student. Twenty men participated in a cross-over study, 10 university runners team (UR) and 10 physical education student (PES) with ages around 18 to 24 years. In each condition, was perform an incremental cardiopulmonary exercise test followed (i) active recovery time using WBV (25 Hz and peak displacement of four mm) and (ii) passive recovery period (no WBV; 0 Hz—0 mm), separated by seven days. Active recovery consisted in one minute seated using WBV and one minute no WBV by six times (12 minutes) more five minutes of passive recovery, and passive recovery consisted in 17 min seated on platform without vibration. Active recovery had significant differences compare to passive recovery (P<0.05). Furthermore, in active recovery, PES had better heart rate response than UR group, however results were not significative. There was not a clear relation between the lineal components of heart rate variability (HRV) in our results. WBV has positive effect in participant’s recovery, however, is necessary establish protocols about the intensities and time adequate for allow accelerate recovery the parasympathetic reactivity, for that reason yet can’t conclude clearly respect to the more effectivity intensity WBV depending to characteristic of subject. 

Citas

American Heart Association. (1996). Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use. Volume 93, Issue 5, Pages 1043-1044.

https://doi.org/10.1161/01.CIR.93.5.1043.

Bellenger, C. R., Fuller, J. T., Thomson, R. L., Davison, K., Robertson, E. Y., & Buckley, J. D. (2016). Monitoring Athletic Training Status Through Autonomic Heart Rate Regulation: A Systematic Review and Meta-Analysis. Sports Medicine. https://doi.org/10.1007/s40279-016-0484-2.

Besnier, F., Labrunée, M., Pathak, A., Pavy-Le Traon, A., Galès, C., Sénard, J. M., & Guiraud, T. (2017). Exercise training-induced modification in autonomic nervous system: An update for cardiac patients. Annals of Physical and Rehabilitation Medicine. https://doi.org/10.1016/j.rehab.2016.07.002.

Borresen, J., & Lambert, M. I. (2008). Autonomic control of heart rate during and after exercise: Measurements and implications for monitoring training status. Sports Medicine. https://doi.org/10.2165/00007256-200838080-00002.

Brown, S. J., & Brown, J. A. (2007). Resting and Postexercise Cardiac Autonomic Control in Trained Masters Athletes. The Journal of Physiological Sciences. https://doi.org/10.2170/physiolsci.RP012306.

Buchheit, M., Chivot, A., Parouty, J., Mercier, D., Al Haddad, H., Laursen, P. B., & Ahmaidi, S. (2010). Monitoring endurance running performance using cardiac parasympathetic function. European Journal of Applied Physiology. https://doi.org/10.1007/s00421-009-1317-x.

Buchheit, M., Laursen, P. B., & Ahmaidi, S. (2007). Parasympathetic reactivation after repeated sprint exercise. American Journal of Physiology - Heart and Circulatory Physiology, 293(1).

ChuDuc, H., NguyenPhan, K., & NguyenViet, D. (2013). A Review of Heart Rate Variability and its Applications. APCBEE Procedia, 7, 80–85. https://doi.org/10.1016/j.apcbee.2013.08.016.

Coote, J. H. (2010). Recovery of heart rate following intense dynamic exercise. Experimental Physiology. https://doi.org/10.1113/expphysiol.2009.047548.

Danieli, A., Lusa, L., Potočnik, N., Meglič, B., Grad, A., & Bajrović, F. F. (2014). Resting heart rate variability and heart rate recovery after submaximal exercise. Clinical Autonomic Research, 24(2), 53–61. https://doi.org/10.1007/s10286-014-0225-2.

Danson, E. J. F., & Paterson, D. J. (2003). Enhanced neuronal nitric oxide synthase expression is central to cardiac vagal phenotype in exercise-trained mice. Journal of Physiology. https://doi.org/10.1097/JOM.0b013e31828dca09.

Dantas, E. M., Kemp, A. H., Andreão, R. V., da Silva, V. J. D., Brunoni, A. R., Hoshi, R. A., … Mill, J. G. (2018). Reference values for short-term resting-state heart rate variability in healthy adults: Results from the Brazilian Longitudinal Study of Adult Health—ELSA-Brasil study. Psychophysiology. https://doi.org/10.1111/psyp.13052.

Dipla, K., Kousoula, D., Zafeiridis, A., Karatrantou, K., Nikolaidis, M. G., Kyparos, A., … Vrabas, I. S. (2016). Exaggerated haemodynamic and neural responses to involuntary contractions induced by whole-body vibration in normotensive obese versus lean women. Experimental Physiology, 101(6), 717–730. https://doi.org/10.1113/EP085556.

Duarte, A., Soares, P. P., Pescatello, L., & Farinatti, P. (2015). Aerobic training improves vagal reactivation regardless of resting vagal control. Medicine and Science in Sports and Exercise. https://doi.org/10.1249/MSS.0000000000000532.

Galaz-Campos, D., Olivares-Arancibia, J., Solis-Urra, P., Suarez-Cadenas, E., Santos-Lozano, A., Rodríguez-Rodríguez, F., & Cristi-Montero, C. (2020). Effect of High-Intensity whole body vibration on blood lactate removal and heart rate after an all-out test in active young men (Efecto de las vibraciones de alta intensidad de cuerpo completo sobre la remoción del lactato sanguíneo y la frecuencia cardia. Retos, 39, 471-

https://doi.org/10.47197/retos.v0i39.78441

García-Artero, E., Porcel, F. O., Ruiz, J. R., Gálvez & F. C., Gálvez. (2006). Entrenamiento vibratorio. Base fisiológica y efectos funcionales. Departamento de fisiología de la universidad de Granada; Selección 15 (2), 78-86.

Gojanovic, B., Feihl, F., Gremion, G., & Waeber, B. (2014). Physiological response to whole-body vibration in athletes and sedentary subjects. Physiological Research / Academia Scientiarum Bohemoslovaca, 63(6), 779–792.

Goldberger, J. J. (2006). Assessment of parasympathetic reactivation after exercise. AJP: Heart and Circulatory Physiology. https://doi.org/10.1152/ajpheart.01118.2005.

Hautala, A., Tulppo, M. P., Mäkikallio, T. H., Laukkanen, R., Nissilä, S., & Huikuri, H. V. (2001). Changes in cardiac autonomic regulation after prolonged maximal exercise. Clinical Physiology. https://doi.org/10.1046/j.1365-2281.2001.00309.x.

Herrero, A. J., Menéndez, H., Gil, L., Martín, J., Martín, T., García-López, D., … Marín, P. J. (2011). Effects of whole-body vibration on blood flow and neuromuscular activity in spinal cord injury. Spinal Cord. https://doi.org/10.1038/sc.2010.151.

Jiao, K., Li, Z., Chen, M., Wang, C., & Qi, S. (2004). Effect of different vibration frequencies on heart rate variability and driving fatigue in healthy drivers. International Archives of Occupational and Environmental Health. https://doi.org/10.1007/s00420-003-0493-y.

Kaikkonen, P., Nummela, A., & Rusko, H. (2007). Heart rate variability dynamics during early recovery after different endurance exercises. European Journal of Applied Physiology.

https://doi.org/10.1007/s00421-007-0559-8.

Kamijo, K., Pontifex, M. B., O’Leary, K. C., Scudder, M. R., Wu, C.-T., Castelli, D. M., & Hillman, C. H. (2011). The effects of an afterschool physical activity program on working memory in preadolescent children. Developmental Science, 14(5), 1046–1058. https://doi.org/10.1111/j.1467-7687.2011.01054.x.

Kerschan‐Schindl, K., Grampp, S., Henk, C., Resch, H., Preisinger, E., Fialka‐ Moser, V., &Imhof, H. (2001). Whole‐body vibration exercise leads to alterations in muscle blood volume. Clinical physiology, 21(3), 377-382.

Kim, J.-H., & Seo, H.-J. (2013). Analysis of Muscle Activation related to Postural Stability according to Different Frequency of Whole Body Vibration during Quiet Standing. Journal of Korean Physical Therapy, 25(5), 316–321.

Kingsley, J. D., & Figueroa, A. (2016). Acute and training effects of resistance exercise on heart rate variability. Clinical Physiology and Functional Imaging. https://doi.org/10.1111/cpf.12223.

Kosar, A. C., Candow, D. G., & Putland, J. T. (2012). Potential Beneficial Effects of Whole-Body Vibration for Muscle Recovery After Exercise. Journal of Strength and Conditioning Research, 26(10), 2907–2911. https://doi.org/10.1519/JSC.0b013e318242a4d3.

Lehrer, P. M., Vaschillo, E., Vaschillo, B., Lu, S. E., Eckberg, D. L., Edelberg, R., … Hamer, R. M. (2003). Heart rate variability biofeedback increases baroreflex gain and peak expiratory flow. Psychosomatic Medicine.https://doi.org/10.1097/01.PSY.0000089200.81962.19.

Luo, J., McNamara, B., & Moran, K. (2005). The use of vibration training to enhance muscle strength and power. Sports Medicine, 35(1), 23-41.

Martinmäki, K., & Rusko, H. (2007). Time-frequency analysis of heart rate variability during immediate recovery from low and high intensity exercise. European Journal of Applied Physiology, 102(3), 353–360. https://doi.org/10.1007/s00421-007-0594-5.

Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., … Piccaluga, E. (1986). Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circulation Research, 59(2), 178–193. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2874900.

Plews, D. J. (2013). The Practical Application of Heart Rate Variability – Monitoring training adaptation in world class athletes. University of Auckland.

Plews, D. J., Laursen, P. B., Stanley, J., Kilding, A. E., & Buchheit, M. (2013). Training adaptation and heart rate variability in elite endurance athletes: Opening the door to effective monitoring. Sports Medicine. https://doi.org/10.1007/s40279-013-0071-8.

Rittweger, J. (2010). Vibration as an exercise modality: how it may work, and what its potential might be. European journal of applied physiology, 108(5), 877-904.

Sañudo, B., César-Castillo, M., Tejero, S., Cordero-Arriaza, F. J., Oliva-Pascual-Vaca, Á., & Figueroa, A. (2016). Effects of Vibration on Leg Blood Flow After Intense Exercise and Its Influence on Subsequent Exercise Performance. Journal of Strength and Conditioning Research, 30(4), 1111–1117. https://doi.org/10.1519/JSC.0b013e3182a20f2c.

Sañudo, B., César-Castillo, M., Tejero, S., Nunes, N., de Hoyo, M., & Figueroa, A. (2013). Cardiac autonomic response during recovery from a maximal exercise using whole body vibration. Complementary Therapies in Medicine, 21(4), 294–299. https://doi.org/10.1016/j.ctim.2013.05.004.

Seiler, S., Haugen, O., & Kuffel, E. (2007). Autonomic Recovery after Exercise in Trained Athletes. Medicine & Science in Sports & Exercise, 39(8), 1366–1373. https://doi.org/10.1249/mss.0b013e318060f17d.

Sydó, N., Sydó, T., Gonzalez Carta, K. A., Hussain, N., Farooq, S., Murphy, J. G., … Allison, T. G. (2018).

Prognostic performance of heart rate recovery on an exercise test in a primary prevention population. Journal of the American Heart Association. https://doi.org/10.1161/JAHA.117.008143.

Takahashi, T., Hayano, J., Okada, A., Saitoh, T., & Kamiya, A. (2005). Effects of the muscle pump and body posture on cardiovascular responses during recovery from cycle exercise. European Journal of Applied Physiology. https://doi.org/10.1007/s00421-005-1369-5.

Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (2009). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Retrieved from https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/3061.

Wong, A., & Figueroa, A. (2018). Effects of whole-body vibration on heart rate variability: acute responses and training adaptations. Clinical Physiology and Functional Imaging. https://doi.org/10.1111/cpf.12524.

Descargas

Publicado

2021-10-01

Cómo citar

Olivares Arancibia, J., Solis-Urra, P., Porras-López, F., Federeci-Díaz, I., Rodríguez-Rodríguez, F., Zavala, J. P., & Cristi-Montero, C. (2021). Respuesta cardiaca autónoma durante la recuperación utilizando vibración de cuerpo completo, después de una prueba de ejercicio cardiopulmonar máxima (Cardiac autonomic response during recovery using whole-body vibration after maximal cardiopulmonary exer. Retos, 42, 323–330. https://doi.org/10.47197/retos.v42i0.82484

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a