Efectos de la intensidad del ejercicio sobre la miostatina y folistatina del músculo sóleo de ratas hiperglicémicas

Autores/as

  • Sepideh Azhir
  • Eidy Alijani
  • Sergio Francisco Martínez Huenchullán Universidad Austral de Chile
  • Hamid Amni
  • Julien Baker
  • Farid Farhani

DOI:

https://doi.org/10.47197/retos.v44i0.91770

Palabras clave:

Entrenamiento aeróbico, Entrenamiento interválico de alta intensidad, mioquinas, Glicemia, Insulina, (Endurance training, High-intensity interval training, Myokines, Blood glucose, Insulin)

Resumen

Antecedentes: La hiperglicemia induce alteraciones en la masa y fuerza del músculo esquelético. La miostatina (Mstn) y folistatina (Fs) son reguladores de masa muscular, los cuales son alterados por hiperglicemia. El ejercicio es utilizado para neutralizar estos cambios; sin embargo, la influencia de la intensidad del mismo no está aclarada. Este estudio comparó dos programas de ejercicio, intensidad moderada y constante (MICT) e interválico de alta intensidad (HIIT), sobre los niveles de ARN mensajero (ARNm) muscular de Mstn y Fs en ratas hiperglicémicas. Material y Métodos: 36 ratas Wistar fueron divididas en controles (n=18) y con hiperglicemia (HG, n=18; inducida con Streptozotocina intraperitoneal). Además, estos grupos fueron subdivididos aleatoriamente en: control no-entrenado, control+entrenamiento moderado constante (MICT), control+entrenamiento interválico de alta intensidad (HIIT), HG no-entrados, HG+MICT y HG+HIIT (cada subgrupo n=6). El entrenamiento duró 8 semanas, con 5 sesiones por semana. La distancia total recorrida por sesión en cada programa de entrenamiento fue igual. 48 horas posterior a la última sesión, las ratas fueron anestesiadas y los músculos sóleos fueron extraídos. Resultados: El entrenamiento HIIT redujo e incrementó significativamente los niveles de Mstn y Fs respectivamente, independiente de la presencia de hiperglicemia (p<0.05).  Además, la razón Mstn:Fs se incrementó significativamente sólo en el grupo de ratas hiperglicémicas entrenadas con HIIT (p<0.05). Conclusión: El entrenamiento HIIT, no MICT, cambió los niveles de ARNm de Mstn y Fs en el músculo sóleo, independiente de la presencia de hiperglicemia. Esto sugiere que la regulación de estos genes es dependiente de la intensidad del ejercicio, en donde la hiperglicemia parece no aminorar esta respuesta.

Abstract. Background: Hyperglycaemia induces dysregulations in skeletal muscle mass and function. Myostatin (Mstn) and follistatin (Fs) are two key regulators of muscle mass, which are known to be dysregulated in people with hyperglycaemia. Exercise is frequently prescribed to counteract these changes; however, the influence of exercise intensity is unknown. The purpose of this study was to compare two training programs, moderate-intensity constant (MICT) and high-intensity interval training (HIIT), on soleus mRNA levels of Mstn and Fs in an animal model of hyperglycaemia. Material and Methods: 36 male Wistar rats, were divided into control (n=18) and hyperglycaemic (HG, n=18; induced by a single intraperitoneal dose of Streptozotocin) groups. Subsequently, these groups were randomly subdivided into control untrained, control+moderate-intensity constant training (MICT), control+high-intensity interval training (HIIT), HG untrained, HG+MICT, and HG+HIIT (n=6 each subgroup). Training programs were performed for 8 weeks, with a frequency of 5 sessions per week. The total distance covered per session in MICT and HIIT was equal. 48 hours following the last training session, rats were anesthetized and soleus muscles were excised. Results: HIIT reduced and increased significantly the Mstn and Fs mRNA levels respectively, irrespective of hyperglycaemia (p<0.05). When Mstn:Fs ratio was analysed, only HIIT induced a significant increase in hyperglycaemic rats (p<0.05). Conclusion: HIIT over MICT, changed the Mstn and Fs soleus mRNA levels, irrespective of hyperglycaemia. This could indicate that the regulation of these genes is exercise intensity-dependent, whereas hyperglycaemia seems to not blunt this response. 

Citas

Abe, S., Soejima, M., Iwanuma, O., Saka, H., Matsunaga, S., Sakiyama, K., & Ide, Y. (2009). Expression of myostatin and follistatin in Mdx mice, an animal model for muscular dystrophy. Zoolog Sci, 26(5), 315-320. https://doi.org/10.2108/zsj.26.315

ADA. (2021). Common Terms. Retrieved from https://www.diabetes.org/resources/students/common-terms

Aune, D., Norat, T., Leitzmann, M., Tonstad, S., & Vatten, L. J. (2015). Physical activity and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis. Eur J Epidemiol, 30(7), 529-542. https://doi.org/10.1007/s10654-015-0056-z

Bagheri, R., Rashidlamir, A., Motevalli, M. S., Elliott, B. T., Mehrabani, J., & Wong, A. (2019). Effects of upper-body, lower-body, or combined resistance training on the ratio of follistatin and myostatin in middle-aged men. Eur J Appl Physiol, 119(9), 1921-1931. https://doi.org/10.1007/s00421-019-04180-z

Baltadjiev, A. G., & Baltadjiev, G. A. (2011). Assessment of body composition of male patients with type 2 diabetes by bioelectrical impedance analysis. Folia Med (Plovdiv), 53(3), 52-57. https://doi.org/10.2478/v10153-011-0057-y

Bertram, S., Brixius, K., & Brinkmann, C. (2016). Exercise for the diabetic brain: how physical training may help prevent dementia and Alzheimer's disease in T2DM patients. Endocrine, 53(2), 350-363. https://doi.org/10.1007/s12020-016-0976-8

Camporez, J. P., Petersen, M. C., Abudukadier, A., Moreira, G. V., Jurczak, M. J., Friedman, G., Haqq, C. M., Petersen, K. F., & Shulman, G. I. (2016). Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proc Natl Acad Sci U S A, 113(8), 2212-2217. https://doi.org/10.1073/pnas.1525795113

Cassidy, S., Thoma, C., Hallsworth, K., Parikh, J., Hollingsworth, K. G., Taylor, R., Jakovljevic, D. G., & Trenell, M. I. (2016). High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: a randomised controlled trial. Diabetologia, 59(1), 56-66. https://doi.org/10.1007/s00125-015-3741-2

Cassidy, S., Thoma, C., Houghton, D., & Trenell, M. I. (2017). High-intensity interval training: a review of its impact on glucose control and cardiometabolic health. Diabetologia, 60(1), 7-23. https://doi.org/10.1007/s00125-016-4106-1

Chatterjee, S., Khunti, K., & Davies, M. J. (2017). Type 2 diabetes. The Lancet, 389(10085), 2239-2251. https://doi.org/10.1016/s0140-6736(17)30058-2

Chen, G. Q., Mou, C. Y., Yang, Y. Q., Wang, S., & Zhao, Z. W. (2011). Exercise training has beneficial anti-atrophy effects by inhibiting oxidative stress-induced MuRF1 upregulation in rats with diabetes. Life Sci, 89(1-2), 44-49. https://doi.org/10.1016/j.lfs.2011.04.018

Chen, Y., Cao, L., Ye, J., & Zhu, D. (2009). Upregulation of myostatin gene expression in streptozotocin-induced type 1 diabetes mice is attenuated by insulin. Biochem Biophys Res Commun, 388(1), 112-116. https://doi.org/10.1016/j.bbrc.2009.07.129

Chung, S. M., Moon, J. S., & Chang, M. C. (2021). Prevalence of Sarcopenia and Its Association With Diabetes: A Meta-Analysis of Community-Dwelling Asian Population. Front Med (Lausanne), 8, 681232. https://doi.org/10.3389/fmed.2021.681232

Covington, J. D., Tam, C. S., Bajpeyi, S., Galgani, J. E., Noland, R. C., Smith, S. R., Redman, L. M., & Ravussin, E. (2016). Myokine Expression in Muscle and Myotubes in Response to Exercise Stimulation. Med Sci Sports Exerc, 48(3), 384-390. https://doi.org/10.1249/MSS.0000000000000787

Dávila-Grisales, A., Mazuera-Quiceno, C., Carreño-Herrera, A., & Henao-Corrales, J. (2021). Efecto de un programa de entrenamiento interválico aeróbico de alta intensidad en población escolar femenina con sobrepeso u obesidad. Retos, 39, 453-458.

Elliott, B., Renshaw, D., Getting, S., & Mackenzie, R. (2012). The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiol (Oxf), 205(3), 324-340. https://doi.org/10.1111/j.1748-1716.2012.02423.x

Fox, C. S., Golden, S. H., Anderson, C., Bray, G. A., Burke, L. E., de Boer, I. H., Deedwania, P., Eckel, R. H., Ershow, A. G., Fradkin, J., Inzucchi, S. E., Kosiborod, M., Nelson, R. G., Patel, M. J., Pignone, M., Quinn, L., Schauer, P. R., Selvin, E., Vafiadis, D. K., American Heart Association Diabetes Committee of the Council on, L., Cardiometabolic, H., Council on Clinical Cardiology, C. o. C., Stroke Nursing, C. o. C. S., Anesthesia, C. o. Q. o. C., Outcomes, R., & American Diabetes, A. (2015). Update on Prevention of Cardiovascular Disease in Adults With Type 2 Diabetes Mellitus in Light of Recent Evidence: A Scientific Statement From the American Heart Association and the American Diabetes Association. Diabetes Care, 38(9), 1777-1803. https://doi.org/10.2337/dci15-0012

Galaviz-Berelleza, R., Trejo-Trejo, M., Borbón, J., Alarcón-Meza, E., Pineda-Espejel, H., Arrayales-Millán, E., Robles-Hernández, G., & Cutti-Riveros, L. (2021). Efecto de un programa de entrenamiento de fuerza sobre IGF-1 en adultos mayores con obesidad e hipertensión controlada. Retos, 39, 253-256.

Gibala, M. J., Little, J. P., Macdonald, M. J., & Hawley, J. A. (2012). Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol, 590(5), 1077-1084. https://doi.org/10.1113/jphysiol.2011.224725

Gomes, M. J., Martinez, P. F., Campos, D. H., Pagan, L. U., Bonomo, C., Lima, A. R., Damatto, R. L., Cezar, M. D., Damatto, F. C., Rosa, C. M., Garcia, C. M., Reyes, D. R., Fernandes, A. A., Fernandes, D. C., Laurindo, F. R., Okoshi, K., & Okoshi, M. P. (2016). Beneficial Effects of Physical Exercise on Functional Capacity and Skeletal Muscle Oxidative Stress in Rats with Aortic Stenosis-Induced Heart Failure. Oxid Med Cell Longev, 2016, 8695716. https://doi.org/10.1155/2016/8695716

Grace, A., Chan, E., Giallauria, F., Graham, P. L., & Smart, N. A. (2017). Clinical outcomes and glycaemic responses to different aerobic exercise training intensities in type II diabetes: a systematic review and meta-analysis. Cardiovasc Diabetol, 16(1), 37. https://doi.org/10.1186/s12933-017-0518-6

Hansen, J. S., Pedersen, B. K., Xu, G., Lehmann, R., Weigert, C., & Plomgaard, P. (2016). Exercise-Induced Secretion of FGF21 and Follistatin Are Blocked by Pancreatic Clamp and Impaired in Type 2 Diabetes. J Clin Endocrinol Metab, 101(7), 2816-2825. https://doi.org/10.1210/jc.2016-1681

He, Z., Tian, Y., Valenzuela, P. L., Huang, C., Zhao, J., Hong, P., He, Z., Yin, S., & Lucia, A. (2018). Myokine Response to High-Intensity Interval vs. Resistance Exercise: An Individual Approach. Front Physiol, 9, 1735. https://doi.org/10.3389/fphys.2018.01735

Karstoft, K., & Pedersen, B. K. (2016). Exercise and type 2 diabetes: focus on metabolism and inflammation. Immunol Cell Biol, 94(2), 146-150. https://doi.org/10.1038/icb.2015.101

Kim, K. H., Kim, H. M., Park, J. S., & Kim, Y. J. (2019). Differential Transcriptome Profile and Exercise Capacity in Cardiac Remodeling by Pressure Overload versus Volume Overload. J Cardiovasc Imaging, 27(1), 50-63. https://doi.org/10.4250/jcvi.2019.27.e4

Kim, K. S., Park, K. S., Kim, M. J., Kim, S. K., Cho, Y. W., & Park, S. W. (2014). Type 2 diabetes is associated with low muscle mass in older adults. Geriatr Gerontol Int, 14 Suppl 1, 115-121. https://doi.org/10.1111/ggi.12189

King, A. J. (2012). The use of animal models in diabetes research. Br J Pharmacol, 166(3), 877-894. https://doi.org/10.1111/j.1476-5381.2012.01911.x

Liubaoerjijin, Y., Terada, T., Fletcher, K., & Boule, N. G. (2016). Effect of aerobic exercise intensity on glycemic control in type 2 diabetes: a meta-analysis of head-to-head randomized trials. Acta Diabetol, 53(5), 769-781. https://doi.org/10.1007/s00592-016-0870-0

Lobato-Huerta, S., Moneda-Rovira, J., Martínez-Tovilla, Y., & Meléndez-Aguilar, J. (2021). Revisión de la obesidad como concepto científico. Retos, 42, 365-374.

Loganathan, R., Bilgen, M., Al-Hafez, B., Zhero, S. V., Alenezy, M. D., & Smirnova, I. V. (2007). Exercise training improves cardiac performance in diabetes: in vivo demonstration with quantitative cine-MRI analyses. J Appl Physiol (1985), 102(2), 665-672. https://doi.org/10.1152/japplphysiol.00521.2006

Madsen, S. M., Thorup, A. C., Overgaard, K., & Jeppesen, P. B. (2015). High Intensity Interval Training Improves Glycaemic Control and Pancreatic beta Cell Function of Type 2 Diabetes Patients. PLoS One, 10(8), e0133286. https://doi.org/10.1371/journal.pone.0133286

Marine, D. A., Fabrizzi, F., Nonaka, K. O., Garcia de Oliveira Duarte, A. C., & de Oliveira Leal, A. M. (2018). Myostatin and Follistatin mRNA Expression in Castrated Rats Submitted to Resistance Training. Journal of Exercise Physiology Online, 21(1), 162-171.

Maruthur, N. M., Tseng, E., Hutfless, S., Wilson, L. M., Suarez-Cuervo, C., Berger, Z., Chu, Y., Iyoha, E., Segal, J. B., & Bolen, S. (2016). Diabetes Medications as Monotherapy or Metformin-Based Combination Therapy for Type 2 Diabetes: A Systematic Review and Meta-analysis. Ann Intern Med, 164(11), 740-751. https://doi.org/10.7326/M15-2650

O'Neill, B. T., Bhardwaj, G., Penniman, C. M., Krumpoch, M. T., Suarez Beltran, P. A., Klaus, K., Poro, K., Li, M., Pan, H., Dreyfuss, J. M., Nair, K. S., & Kahn, C. R. (2019). FoxO Transcription Factors Are Critical Regulators of Diabetes-Related Muscle Atrophy. Diabetes, 68(3), 556-570. https://doi.org/10.2337/db18-0416

Pryor, J. S., Montani, J. P., & Adair, T. H. (2010). Angiogenic growth factor responses to long-term treadmill exercise in mice. Indian J Physiol Pharmacol, 54(4), 309-317.

Qinna, N. A., & Badwan, A. A. (2015). Impact of streptozotocin on altering normal glucose homeostasis during insulin testing in diabetic rats compared to normoglycemic rats. Drug Des Devel Ther, 9, 2515-2525. https://doi.org/10.2147/DDDT.S79885

Raschke, S., & Eckel, J. (2013). Adipo-myokines: two sides of the same coin--mediators of inflammation and mediators of exercise. Mediators Inflamm, 2013, 320724. https://doi.org/10.1155/2013/320724

Roostaei, M., Pirani, H., & Rashidlamir, A. (2020). High intensity interval training induces the expression of Myostatin and Follistatin isoforms in rat muscle: differential effects on fast and slow twitch skeletal muscles. Medical Laboratory Journal, 14(5), 48-53. https://doi.org/10.29252/mlj.14.5.48

Seuring, T., Archangelidi, O., & Suhrcke, M. (2015). The Economic Costs of Type 2 Diabetes: A Global Systematic Review. Pharmacoeconomics, 33(8), 811-831. https://doi.org/10.1007/s40273-015-0268-9

Smith, A. C., Mullen, K. L., Junkin, K. A., Nickerson, J., Chabowski, A., Bonen, A., & Dyck, D. J. (2007). Metformin and exercise reduce muscle FAT/CD36 and lipid accumulation and blunt the progression of high-fat diet-induced hyperglycemia. Am J Physiol Endocrinol Metab, 293(1), E172-181. https://doi.org/10.1152/ajpendo.00677.2006

Stensvold, D., Tjonna, A. E., Skaug, E. A., Aspenes, S., Stolen, T., Wisloff, U., & Slordahl, S. A. (2010). Strength training versus aerobic interval training to modify risk factors of metabolic syndrome. J Appl Physiol (1985), 108(4), 804-810. https://doi.org/10.1152/japplphysiol.00996.2009

Sylow, L., Kleinert, M., Richter, E. A., & Jensen, T. E. (2017). Exercise-stimulated glucose uptake - regulation and implications for glycaemic control. Nat Rev Endocrinol, 13(3), 133-148. https://doi.org/10.1038/nrendo.2016.162

Thu, V. T., Kim, H. K., & Han, J. (2017). Acute and Chronic Exercise in Animal Models. Adv Exp Med Biol, 999, 55-71. https://doi.org/10.1007/978-981-10-4307-9_4

Umpierre, D., Ribeiro, P. A., Kramer, C. K., Leitao, C. B., Zucatti, A. T., Azevedo, M. J., Gross, J. L., Ribeiro, J. P., & Schaan, B. D. (2011). Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA, 305(17), 1790-1799. https://doi.org/10.1001/jama.2011.576

Wang, H., Bei, Y., Lu, Y., Sun, W., Liu, Q., Wang, Y., Cao, Y., Chen, P., Xiao, J., & Kong, X. (2015). Exercise Prevents Cardiac Injury and Improves Mitochondrial Biogenesis in Advanced Diabetic Cardiomyopathy with PGC-1alpha and Akt Activation. Cell Physiol Biochem, 35(6), 2159-2168. https://doi.org/10.1159/000374021

Wang, X., Zhao, H., Ni, J., Pan, J., Hua, H., & Wang, Y. (2019). Identification of suitable reference genes for gene expression studies in rat skeletal muscle following sciatic nerve crush injury. Mol Med Rep, 19(5), 4377-4387. https://doi.org/10.3892/mmr.2019.10102

Way, K. L., Hackett, D. A., Baker, M. K., & Johnson, N. A. (2016). The Effect of Regular Exercise on Insulin Sensitivity in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Diabetes Metab J, 40(4), 253-271. https://doi.org/10.4093/dmj.2016.40.4.253

Willis, S. A., Sargeant, J. A., Thackray, A. E., Yates, T., Stensel, D. J., Aithal, G. P., & King, J. A. (2019). Effect of exercise intensity on circulating hepatokine concentrations in healthy men. Appl Physiol Nutr Metab, 44(10), 1065-1072. https://doi.org/10.1139/apnm-2018-0818

Yaspelkis, B. B., 3rd, Lessard, S. J., Reeder, D. W., Limon, J. J., Saito, M., Rivas, D. A., Kvasha, I., & Hawley, J. A. (2007). Exercise reverses high-fat diet-induced impairments on compartmentalization and activation of components of the insulin-signaling cascade in skeletal muscle. Am J Physiol Endocrinol Metab, 293(4), E941-949. https://doi.org/10.1152/ajpendo.00230.2007

Descargas

Publicado

2022-02-01

Cómo citar

Azhir, S., Alijani, E., Martínez Huenchullán, S. F., Amni, H., Baker, J., & Farhani, F. (2022). Efectos de la intensidad del ejercicio sobre la miostatina y folistatina del músculo sóleo de ratas hiperglicémicas. Retos, 44, 889–896. https://doi.org/10.47197/retos.v44i0.91770

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas