Usain Bolt. Un "monstruo esperanzado"? Un estudio de caso descriptivo (Usain Bolt. A “hopeful monster”? A descriptive case study)

  • José Augusto Rodrigues dos Santos Universidade do Porto
Palabras clave: evolutionary biology; athletic performance; genetics; epigenetics, (biología evolutiva; rendimiento atlético; genética; epigenética)



Resumen. Los impresionantes logros deportivos de Usain Bolt despertaron la admiración de todo el mundo y plantearon la cuestión de la génesis de su excelencia deportiva. A la luz de las diversas teorías de la evolución, tratamos de comprender si existen bases evolutivas para considerar a Usain Bolt como un "monstruo esperanzado", es decir, un fenotipo transgresor más allá del rango de fenotipos parentales. Esta hipótesis pondría en tela de juicio el gradualismo defendido por Darwin y daría lugar al saltacionismo mediante el cual pueden ocurrir cambios profundos en una o pocas generaciones. Parece que la hipótesis saltacional no es científicamente adecuada para justificar el rendimiento deportivo de Usain Bolt. Sin conocer el perfil genético de Usain Bolt y sus ancestros, podemos plantear la hipótesis de que su excelencia deportiva es el resultado de un determinado polimorfismo o cambios fenotípicos inducidos por determinantes ecológicos, entre los que destacan el entrenamiento y la nutrición. Podemos admitir que Usain Bolt es un caso raro de plasticidad del desarrollo que permite que su genoma genere un fenotipo asociado con una competencia específica para correr. En el estado actual del conocimiento científico, no hay forma de asociar ningún polimorfismo con el rendimiento en eventos deportivos relacionados con la fuerza y la velocidad, pero hay un campo desafiante para la ciencia. Consciente de las dificultades para caracterizar a Usain Bolt, es sin duda el resultado de una extraordinaria combinación de factores genéticos y ambientales.

Abstract. Usain Bolt's stunning sportive achievements sparked admiration from around the world and raised the question of the genesis of his sport excellence. In the light of the various theories of evolution, we try to understand whether there are evolutionary grounds for considering Usain Bolt a “hopeful monster”, i.e. a transgressive phenotype beyond the range of parental phenotypes. This hypothesis would call into question the gradualism defended by Darwin and would give room to saltationism by which profound changes can occur in one or a few generations. It seems that the saltational hypothesis is not scientifically adequate to justify Usain Bolt’s sport performance. Not knowing the genetic profile of Usain Bolt and his ancestors, we can hypothesize that his sporting excellence is the result of a given polymorphism or phenotypic changes induced by ecological determinants, among which training and nutrition stand out.We can admit that Usain Bolt is a rare case of developmental plasticity that enables his genome to generate a phenotype associated with a specific competence for sprinting.In the current state of scientific knowledge, there is no way to associate any polymorphism with performance in sporting events related to strength and speed but a challenging field is open for science. Aware of the difficulties in characterizing Usain Bolt, he is undoubtedly the result of an extraordinary combination of genetic and environmental factors.

Biografía del autor/a

José Augusto Rodrigues dos Santos, Universidade do Porto

Professor Associado com Agregação

Doutorado em Biologia do Desporto

Departamento de Atletismo 

Especialista em treino desportivo, nutrição e bioquímica do exercício


Ankala A, Tamhankar PM, Valencia CA et al. (2015). Clinical applications and implications of common and founder mutations in Indian subpopulations. Hum Mutat, 36(1):1-10. doi: 10.1002/humu.22704.

Barrès R, Yan J, Egan B et al. (2012). Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab, 15:405.411. doi: 10.1016/j.cmet.2012.01.001.

Bassel-Duby R, Olson EN (2006). Signaling pathways in skeletal muscle remodelling. Annu Rev Biochem, 75:19-37.

Burkhardt RW Jr (2013). Lamarck, evolution, and the inheritance of acquired characters. Genetics, 194(4):793-805.

Calvo JA, Daniels TG, Wang X et al. (2008). Muscle-specific expression of PPARgamma coactivator-1 alpha improves exercise performance and increases peak oxygen uptake. J Appl Physiol (1985), 104(5):1304-1312. doi: 10.1152/jappphysiol.01231.2007.

Cavalli G, Heard E (2019). Advances in epigenetics link genetics to environment and disease. Nature, 571:489-499.

Cornish-Bowden A, Cárdenas ML (2017) Life before LUCA. J Theor Biol, 434:68-74.

Croft W (2003). Typology and universals. Cambridge University Press.

Darwin C (1859). On the origin of species by means of natural selection or the preservation of favoured races in the struggle of life. Murray, London.

Dittrich-Reed DR, Fitzpatrick BM (2013). Transgressive hybrids as hopeful monsters. Evol Biol, 40:310-315.

Galera A (2017). The impact of Lamarck’s theory ov evolution before Darwin’s theory. J Hist Biol, 50(1):53-70.

Gapp K, von Ziegler L, Tweedie-Cullen RY, Mansuy IM (2014). Early life epigenetic programming and transmission of stress-induced traits in mammals. Bioessays, 36:491–502.

Gardner A (2013). Darwinism, not mutationism explains the design of organisms. Prog Biophys Mol Biol, 111(2-3): 97-98. doi: 10.1016/j.pbiomolbio.2012.08.012.

Goldschmidt R (1933). Some aspects of evolution. Science, 78(2033):539-547. doi: 10.1126/science.78.2033.539.

Grazioli E, Dimauro I, Mercatelli N, Wang G, Pitsiladis Y, Di Luigi L, Caporossi D (2017). Physical activity in the prevention of human diseases: role of epigenetic modifications. BMC Genomics, 18(Suppl 8):802. doi: 10.1186/s12864-017-4193-5.

Grenda A, Leonska-Duniec A, Kaczmarczyk M et al. (2014). Interactions between ACE I/D and ACTN3 R577X polymorphisms in Polish competitive swimmers. J Hum Kinet, 42:127-136. doi: 10.2478/hukin-2014-0067.

Grossniklaus U, Kelly WG, Ferguson-Smith AC, Pembrey M, Lindquist S (2013). Transgenerational epigenetic inheritance: how important is it? Nat Rev Genet, 14:228–235.

Hargreaves M (2015). Exercise and gene expression. Prog Mol Biol Trnasl Sci, 135:457-460. doi: 10.1016/bs.pmbts.2015.07.006.

Hoffman NJ, Parker BL, Chaudhuri R et al. (2015). Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab, 22(5):922-935. doi: 10.1016/j.cmet.2015.09.001.

Houweling PJ, Papadimitriou ID, Seto JT, Pérez LM, Coso JD, North KN, Lucia A, Eynon N (2018). Is evolutionary loss our gain? The role of ACTN3 p.Arg577Ter (R577x) genotype in athletic performance, ageing and disease. Hum Mutat, doi: 10.1002/humu.23663.

Indrio F, Martini S, Francavilla R et al. (2017) Epigenetic matters: the link between early nutrition, microbiome, and long-term health development. Front Pediatr, 5:178. doi: 10.3389/fped.2017.00178.

Jacques M, Hiam D, Craig J et al. (2019). Epigenetic changes in healthy human skeletal muscle following exercise – a systematic review. Epigenetics, 14(7):633-648. doi: 10.80/15592294.2019.1614416.

Jones, PA (2012). Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet, 13(7):484-492. doi: 10.1038/nrg3230.

Katada S, Imhof A, Sassone-Corsi P (2012). Connecting threads: epigenetics and metabolism. Cell, 148(1-2):24-28. doi: 10.1016/j.cell.2012.01.001.

Kiezum A, Pulit SL, Francioli LC et al. (2013). Deleterious alleles in the human genome are on average younger than neutral alleles of the same frequency. PLoS Genet, 9(2):e1003301. Doi: 10.1371/journal.pgen.10003301.

Kikuchi N, Zempo H, Fuku N et al. (2017). Association between ACTN3 R577X polymorphism. J Exerc Nutrition Biochem, 19:157-164. doi: 10.5717/jenb.2015.15093001.

Kohn TA, Essén-Gustavsson B, Myburgh KH (2011). Specific muscle adaptations in type II fibers after high-intensity interval training of weel-trained runners. Scand J Med Sports, 21:765-772.

Kuhn JA (2012). Dissecting Darwinism. Proc (Bayl Univ Med Cen), 25(1):41-47.

Kulathinal RJ (2010). Commemorating the 20th century Darwin: Ernst Mayr’s words and thoughts, five years later. Genome, 53:157-159.

Levenson JM, Sweatt JD (2005). Epigenetic mechanisms in memory function. Nat Rev Neurosci, 6(2):108-118.

Levit GS, Meister K, Hoßfeld U (2008). Alternative evolutionary theories: a historical survey. J Bioecon, 10:71-96.

Li E, Zhang Y (2014). DNA methylation in mammals. Cold Spring Harb Perspect Biol, 1;6:a019133.

Lim C, Shimizu J, Kawano F, Kim HJ, Kim CK (2020). Adaptive responses of histone modifications to resistance exercise in human skeletal muscle. PLoS ONE, 15(4): e0231321.

Martin WF, Garg S, Zimorski V (2015). Endosymbiotic theories for eukaryote origin. Phil Trans R Soc B, 370: 20140330. doi: 10.1098/rstb.2014.0330.

Martin WF, Tielens AGM, Mentel M, Garg SG, Gould SB (2017). The physiology of phagocytosis in the contex of mithocondrial origin. Microbiol Mol Biol Rev, 81: e00008-17. doi: 10.1128/MMBR.00008-17.

Mayr E (1982). The growth of biological thought. Cambridge MA: Harvard University Press.

McCarthy JJ, Esser KA (2007). MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol (1985), 102(1):306-313. doi: 10.1152/japplphysiol.00932.2006.

McGee SL, Hargreaves M (2019). Epigenetics and Exercise. Trends Endocrinol Metab, 30(9):636-645. doi: 10.1016/j.tem.2019.06.001.

McGee SL, Walder KR (2017). Exercise and the skeletal muscle epigenome. Cold Spring Harb Perspect Med, 7:a029876.

Mneimneh S (2012). Crossing over…Markov meets Mendel. PLoS Comput Biol, 8(5):1-12.

Muñoz RM, Vargas AC, Monsalves-Alvarez M et al. (2021). Somatotype and polymorphism of the ACTN3 and ACE gene in Chilean table tennis players. RETOS, 41:791-797. doi: 10.47197/retos.v41i0.81410.

Ogasawara R, Akimoto T, Umeno T et al. (2016). MicroRNA expression profiling in skeletal muscle reveals different regulatory patterns in high and low responders to resistance training. Physiol Genomics, 48:320-324. doi: 10.1152/physiolgenomics.00124.2015.

Pérusse L, Rankinen T, Hagberg JM et al. (2013). Advances in exercise, fitness, and performance genomics in 2012. Med Sci Sports Exerc, 45(5):824-831.

Pickering C, Kiely J (2017). ACTN3: more tha just a gene for speed. Front Physiol, 8:1080. doi: 10.3389/fphys.2017.01080.

Pigliucci M (2008). What, if anything, is an evolutionary novelty? Philosophy of Science, 75(5):887-898.

Portin P (2015). A comparison of biological and cultural evolution. J Genet, 94:155-168.

Rieseberg LH, Archer MA, Wayne RK (1999). Transgressive segregation, adaptation and speciation. Heredity, 83:363-372.

Russell AP, Lamon S, Boon H et al. (2013). Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J Physiol, 591(18):4637-4653. doi: 10.1113/jphysiol.2013.255695.

Saltin B, Kim CK, Terrados N, Larsen H, Svedenhag J, Rolf CJ (1995). Morphology, enzyme activities and buffer capacity in leg muscles of Kenyan and Scandinavian runners. Scand J Med Sci Sports, 5:222-230.

Scott EC (2006). Creationism and evolution: it´s the American way. Cell, 124(3):449-451.

Scott RA, Irving R, Irwin L et al. (2010) ACTN3 and ACE genotypes in elite Jamaican and US sprinters. Med Sci Sports Exerc, 42(1):107-112.

Sikora M, Laayouni H, Calafell F, Comas D, Bertranpetit J (2011). A genomic analysis identifies a novel component in the genetic structure of sub-Saharan African populations. Eur J Hum Genet, 19(1):84-88. doi: 10.1038/ejhg.2020.141.

Singh RS (2015). Limits of imagination: the 150th anniversary of Mendel’s Laws, and why Mendel failed to see the importance of his discovery for Darwin’s theory of evolution. Genome, 58(9):415-421.

Stoltzfus A, Cable K (2014) Mendelian-mutationism: the forgotten evolutionary synthesis.

Sultan SE (2003). The promise of ecological developmental biology: commentary. Journal of Experimental Zoology (Mol Dev Evol), 296B:1-7.

Suzuki MM, Bird A (2008). DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Gen, 9:465-476.

Szyf M (2009). Epigenetics, DNA methylation, and chromatin-modifying drugs. Annu Rev Pharmacol Toxicol, 49:243-263. doi: 10.1146/annurev-pharmtox-061008-103102.

Theißen G (2009). Saltational evolution: hopeful monsters are here to stay. Theory Biosci, 128:43-51.

Tishkoff SA, Reed FA, Friedlaender FR et al. (2009). The genetic structure and history of Africans and African Americans. Science, 324:1035–1044. (PubMed: 19407144).

Vincent B, De Bock K, Ramaekers M et al. (2007). ACTN3 (R577X) genotyoe is associated with fiber type distribution. Physiol Genom, 32:58-63. doi: 10.1152/physiolgenomics.00173.2007.

Voisin S, Eynon N, Yan X, Bishop DJ (2015). Exercise training and DNA methylation in humans. Acta Physiol (Oxf), 213(1):39-59. doi: 10.1111/apha.12414.

Wagh K, Bhatia A, Alexe G et al. (2012). Lactase persistence and lipid pathway selection in the Maasai. PLoS One, 7(9):e44751. doi: 10.1371/journal.pone.0044751.

Weiss MC, Preiner M, Xavier JC, Zimorski V, Martin WF (2018). The last universal common ancestor netween ancient Earth chemistry and the onset of genetics. PLoS Genet, 14(8): e1007518. doi: 10.1371/journal.pgen.1007518.

Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016). The physiology and habitat of the last universal common ancestor. Nat Microbiol, 1(9):16116. doi: 10.1038/nmicrobiol.2016.116.

Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH et al. (2003). ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet, 73:627-631.

Zhang H, Mallik A, Zeng RS (2013). Control of panama disease of banana by rotating and intercropping with Chinese chive (Allium tuberosum Rottler): role of plant volatiles. J Chem Ecol, 39:243–252.

Zhang P, WU W, Chen Q, Chen M (2019). Non-coding RNAs and their integrated networks. J Integr Bioinform, 16(3): 20190027.

Cómo citar
Rodrigues dos Santos, J. (2021). Usain Bolt. Un "monstruo esperanzado"? Un estudio de caso descriptivo (Usain Bolt. A “hopeful monster”? A descriptive case study). Retos, 42, 535-548.
Revisiones teóricas