El Flujo espiratorio Máximo y la Fuerza de prensión Manual predicen la salud ósea de niños y adolescentes (Maximum expiratory flow and handgrip strength predict bone health in children and adolescents)

  • Fernando Alvear-Vasquez Departamento de ciencias de la Actividad Física
  • Rossana Gomez-Campos Departamento de Diversidad e Inclusividad Educativa, Universidad Católica del Maule, Talca, Chile
  • Paz Pezoa-Fuentes Programa de Doctorado en Ciencias de la Actividad Física, Universidad Católica del Maule, Talca, Chile
  • Camilo Urra-Albornoz Programa de Doctorado en Ciencias de la Actividad Física, Universidad Católica del Maule, Talca, Chile
  • Javiera Caceres-Bahamondes Universidad Autónoma de Chile
  • Cristian Luarte-Rocha Universidad San Sebastián
  • Jose Sulla-Torres Universidad Católica Santa María
  • Marco Antonio Cossio-Bolaños Universidad Católica del Maule, Talca, Chile. Centro de Investigación CINEMAROS; Arequipa, Perú
Palabras clave: Salud ósea, Fuerza de prensión manual, Flujo espiratorio máximo, Niños (Bone health, Manual grasping strength, Maximum expiratory flow, Children)

Resumen

Objetivos: Analizar la relación de la fuerza de prensión manual FPM con el Flujo espiratorio Máximo FEM y verificar como estos parámetros en conjunto pueden contribuir sobre la salud ósea en niños y adolescentes. Metodología: Se efectuó un estudio descriptivo (correlacional). Se estudió de forma probabilística a 253 niños y adolescentes (134 hombres y 119 mujeres). El rango de edad fue de 6,0 hasta 15,0 años. Se evaluó el peso, la estatura de pie, estatura sentada, longitud del antebrazo derecho, el diámetro del fémur derecho, la fuerza de prensión manual FPM derecha e izquierda y el flujo espiratorio máximo FEM. Se calculó la densidad mineral ósea DMO y el contenido mineral óseo CMO por medio de ecuaciones de regresión antropométrica. Resultados: Se observó correlaciones positivas entre FPM con el FEM en ambos sexos (R2adjust = 30 a 37%). La FPM de forma individual explica la DMO y el CMO entre 58 a 69%, mientras que el FEM entre 35 a 42%. Ambas variables en conjunto (FPM derecha e izquierda + FEM) explican la DMO y el CMO entre 67 a 68%. Conclusión: Se observó correlaciones positivas entre la FPM y FEM en escolares de ambos sexos. Ambos variables son determinantes para predecir la salud ósea de niños y adolescentes. Estos resultados sugieren que ambos parámetros pueden servir como indicadores de aptitud funcional para identificar la fragilidad ósea entre niños y adolescentes. 


Abstract. Objectives: To analyze the relationship between manual grasping force (FPM) and Maximum expiratory flow (FEM), and to verify how these parameters together can contribute to bone health in children and adolescents. Methodology: A descriptive (correlational) study was carried out. A total of 253 children and adolescents (134 boys and 119 girls) were selected probabilistically. The age range is 6.0 to 15.0 years old. Weight, standing height, sitting height, right forearm length, right biepicondylar femur diameter, right and left FPM, and peak FEM were evaluated. Bone mineral density (BMD) and bone mineral content (CMD) were calculated by means of anthropometric regression equations. Results: Positive correlations were observed between FPM and FEM in both sexes (R2adjust = 30 to 37%). FPM individually explains BMD and CMD by 58% to 69%, while FEM by 35% to 42%. Both variables together (right and left FPM + FEM) explain BMD and CMD by 67% to 68%. Conclusion: Positive correlations were observed between FPM and FEM in schoolchildren of both sexes. Both variables are determinant to predict children's and adolescents' bone health. These results suggest that both parameters can serve as indicators of functional aptitude to identify bone fragility among children and adolescents.

Citas

Bae, J. Y., Jang, K. S., Kang, S., Han, D. H., Yang, W., & Shin, K. O. (2015). Correlation between basic physical fitness and pulmonary function in Korean children and adolescents: a cross-sectional survey. Journal of physical therapy science, 27(9), 2687-2692.

Bahat, G., Tufan, A., Ozkaya, H., Tufan, F., Akpinar, T. S., Akin, S., & Karan, M. A. (2014). Relation between hand grip strength, respiratory muscle strength and spirometric measures in male nursing home residents. The Aging Male, 17(3), 136-140.

Baptista, F., Barrigas, C., Vieira, F., Santa-Clara, H., Homens, P. M., Fragoso, I., & Sardinha, L. B. (2012). The role of lean body mass and physical activity in bone health in children. Journal of bone and mineral metabolism, 30(1), 100-108.

Berntsen, S., Wisløff, T., Nafstad, P., & Nystad, W. (2008). Lung function increases with increasing level of physical activity in school children. Pediatric exercise science, 20(4), 402-410.

Chan, D. C. C., Lee, W. T. K., Lo, D. H. S., Leung, J. C. S., Kwok, A. W. L., & Leung, P. C. (2008). Relationship between grip strength and bone mineral density in healthy Hong Kong adolescents. Osteoporosis International, 19(10), 1485-1495.

Chulvi-Medrano, I., Faigenbaum A., Cortell-Tormo, JM. ¿Puede el entrenamiento de fuerza prevenir y controlar la dinapenia pediátrica? Retos, Nuevas tendencias en Educación Física, Deporte y Recreación, número 33, (1º semestre), 298-307.

Conway, S. P., Oldroyd, B., Brownlee, K. G., Wolfe, S. P., & Truscott, J. G. (2008). A cross-sectional study of bone mineral density in children and adolescents attending a Cystic Fibrosis Centre. Journal of Cystic Fibrosis, 7(6), 469-476.

Cossio-Bolaños, M., Lee-Andruske, C., De Arruda, M., Luarte-Rocha, C., Almonacid-Fierro, A., & Gómez-Campos, R. (2018). Hand grip strength and maximum peak expiratory flow: determinants of bone mineral density of adolescent students. BMC pediatrics, 18(1), 96.

Cossio-Bolaños, M., Rubio-Gonzalez, J., Luarte-Rocha, C., Rivera-Portugal, M., Urra-Albornoz, C., Gomez-Campos, R. Variables antropométricas, maduración somática y flujo espiratorio: determinantes de la masa libre de grasa en jóvenes nadadores. RETOS. Nuevas tendencias en Educación Física, Deporte y Recreación, 37(1º semestre), 406-411.

Couser Jr, J. I., Martinez, F. J., & Celli, B. R. (1993). Pulmonary rehabilitation that includes arm exercise reduces metabolic and ventilatory requirements for simple arm elevation. Chest, 103(1), 37-41.

Dodds, R. M., Syddall, H. E., Cooper, R., Benzeval, M., Deary, I. J., Dennison, E. M. & Kirkwood, T. B. (2014). Grip strength across the life course: normative data from twelve British studies. PloS one, 9(12), e113637.

Ducher, G., Jaffré, C., Arlettaz, A., Benhamou, C. L., & Courteix, D. (2005). Effects of long-term tennis playing on the muscle-bone relationship in the dominant and nondominant forearms. Canadian Journal of Applied Physiology, 30(1), 3-17..

Feldman, J. M., Lehrer, P. M., Borson, S., Hallstrand, T. S., & Siddique, M. I. (2005). Health care use and quality of life among patients with asthma and panic disorder. Journal of Asthma, 42(3), 179-184.

Fried, L. P., Tangen, C. M., Walston, J., Newman, A. B., Hirsch, C., Gottdiener, J., ... & McBurnie, M. A. (2001). Frailty in older adults: evidence for a phenotype. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56(3), M146-M157.

Frost, H. M. (2003). Bone's mechanostat: a 2003 update. The anatomical record part A: discoveries in molecular, cellular, and evolutionary biology, 275(2), 1081-1101.

Garcia-Soidan, JL., López Pazos, J., Ogando Berea, H., Fernández-Balea, A., Padrón-Cabo, A., Prieto-Troncoso, J. Utilidad de la cineantropometría y la bioimpedancia para orientar la composición corporal y los hábitos de los futbolistas. Retos. Nuevas tendencias en Educación Física, Deporte y Recreación, 2014, nº 25, pp. 117-119

Gómez-Campos R, Andruske CL, Arruda Md, Urra Albornoz C, Cossio-Bolaños M (2017) Ecuaciones propuestas y valores de referencia para calcular la salud ósea en niños y adolescentes en función de la edad y el sexo. PLoS ONE 12 (7): e0181918. https://doi.org/10.1371/journal.pone.0181918

Gracia-Marco, L., Vicente-Rodriguez, G., Casajus, J. A., Molnar, D., Castillo, M. J., & Moreno, L. A. (2011). Effect of fitness and physical activity on bone mass in adolescents: the HELENA Study. European journal of applied physiology, 111(11), 2671-2680.

Illi, S. K., Held, U., Frank, I., & Spengler, C. M. (2012). Effect of respiratory muscle training on exercise performance in healthy individuals. Sports medicine, 42(8), 707-724.

International Society For the Advancement of Kinanthropometry (ISAK). (2001). International Standards For Anthropometic Assessment. Nueva Zelanda.

Johnson, R. K., Russ, J., & Goran, M. I. (1998). Physical activity related energy expenditure in children by doubly labeled water as compared with the Caltrac accelerometer. International Journal of Obesity, 22(11), 1046.

Kürkçü, R., & Gökhan, İ. (2011). The effects of handball training on the some respiration and circulatory parameters of school boys aged 10-13 years. Journal of Human Sciences, 8(1), 135-143.

Mirwald, R. L., Baxter-Jones, A. D., Bailey, D. A., & Beunen, G. P. (2002). An assessment of maturity from anthropometric measurements. Medicine & science in sports & exercise, 34(4), 689-694.

Nasri, R., Zrour, S. H., Rebai, H., Najjar, M. F., Neffeti, F., Bergaoui, N., & Tabka, Z. (2013). Grip strength is a predictor of bone mineral density among adolescent combat sport athletes. Journal of Clinical Densitometry, 16(1), 92-97.

Nishiyama, K. K., Macdonald, H. M., Moore, S. A., Fung, T., Boyd, S. K., & McKay, H. A. (2012). Cortical porosity is higher in boys compared with girls at the distal radius and distal tibia during pubertal growth: an HR‐pQCT study. Journal of Bone and Mineral Research, 27(2), 273-282

Ortega, F. B., Silventoinen, K., Tynelius, P., & Rasmussen, F. (2012). Muscular strength in male adolescents and premature death: cohort study of one million participants. Bmj, 345, e7279.

Quanjer, P. H., Tammeling, G. J., Pederson, O. F., Peslin, R., & Yernault, J. C. (1993). Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J, 6(Suppl 16), 5-40.

Quist, M., Langer, S. W., Rørth, M., Christensen, K. B., & Adamsen, L. (2013). “EXHALE”: exercise as a strategy for rehabilitation in advanced stage lung cancer patients: a randomized clinical trial comparing the effects of 12 weeks supervised exercise intervention versus usual care for advanced stage lung cancer patients. BMC cancer, 13(1), 477.

Richards, L. G., Olson, B., & Palmiter-Thomas, P. (1996). How forearm position affects grip strength. The American Journal of Occupational Therapy, 50(2), 133-138.

Ro, H. J., Kim, D. K., Lee, S. Y., Seo, K. M., Kang, S. H., & Suh, H. C. (2015). Relationship between respiratory muscle strength and conventional sarcopenic indices in young adults: a preliminary study. Annals of rehabilitation medicine, 39(6), 880.

Romer, L. M., & Polkey, M. I. (2008). Exercise-induced respiratory muscle fatigue: implications for performance. Journal of Applied Physiology.

Rozek-Piechura, K., Ignasiak, Z., Slawinska, T., Piechura, J., & Ignasiak, T. (2014). Respiratory function, physical activity and body composition in adult rural population. Annals of Agricultural and Environmental Medicine, 21(2).

Sahin, G., Ulubas, B., Calikoglu, M., & Erdogan, C. (2004). Handgrip strength, pulmonary function tests, and pulmonary muscle strength in fibromyalgia syndrome: is there any relationship?. Southern medical journal, 97(1), 25-30.

Shah, S., Nahar, P., Vaidya, S., & Salvi, S. (2013). Upper limb muscle strength & endurance in chronic obstructive pulmonary disease. The Indian journal of medical research, 138(4), 492.

Sieck, G. C., Ferreira, L. F., Reid, M. B., & Mantilla, C. B. (2011). Mechanical properties of respiratory muscles. Comprehensive Physiology, 3(4), 1533-1567.

Smith, M. P., Standl, M., Berdel, D., von Berg, A., Bauer, C. P., Schikowski, T., & Schulz, H. (2018). Handgrip strength is associated with improved spirometry in adolescents. PloS one, 13(4), e0194560.

Smith, M. P., Standl, M., Berdel, D., von Berg, A., Bauer, C. P., Schikowski, T., & Schulz, H. (2018). Handgrip strength is associated with improved spirometry in adolescents. PloS one, 13(4), e0194560.

Ubago-Guisado, E., Gómez-Cabello, A., Sánchez-Sánchez, J., García-Unanue, J., & Gallardo, L. (2015). Influence of different sports on bone mass in growing girls. Journal of sports sciences, 33(16), 1710-1718.

Vaz Fragoso, C. A., Gahbauer, E. A., Van Ness, P. H., Concato, J., & Gill, T. M. (2008). Peak expiratory flow as a predictor of subsequent disability and death in community‐living older persons. Journal of the American Geriatrics Society, 56(6), 1014-1020.

Vlachopoulos, D., Barker, A. R., Ubago-Guisado, E., Ortega, F. B., Krustrup, P., Metcalf, B., & Moreno, L. A. (2018). The effect of 12-month participation in osteogenic and non-osteogenic sports on bone development in adolescent male athletes. The PRO-BONE study. Journal of science and medicine in sport, 21(4), 404-409.

Wanger, J. (2011). Pulmonary function testing (3rd ed.). Sudbury, MA: Jones & Bartlett Learning.

World Health Organization. (2007). Steps to health: A European framework to promote physical activity for health (No. EUR/06/5062700/10). Copenhagen: WHO Regional Office for Europe.

Wrotniak, B. H., Epstein, L. H., Dorn, J. M., Jones, K. E., & Kondilis, V. A. (2006). The relationship between motor proficiency and physical activity in children. Pediatrics, 118(6), e1758-e1765

Publicado
2019-12-21
Cómo citar
Alvear-Vasquez, F., Gomez-Campos, R., Pezoa-Fuentes, P., Urra-Albornoz, C., Caceres-Bahamondes, J., Luarte-Rocha, C., Sulla-Torres, J., & Cossio-Bolaños, M. (2019). El Flujo espiratorio Máximo y la Fuerza de prensión Manual predicen la salud ósea de niños y adolescentes (Maximum expiratory flow and handgrip strength predict bone health in children and adolescents). Retos, 38(38), 123-128. https://doi.org/10.47197/retos.v38i38.71786
Sección
Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a