Evaluación de la Eficacia de un Sistema de Monitoreo de Ejercicios en Tiempo Real Impulsado por Inteligencia Artificial en el Aprendizaje Colaborativo Asistido por Computadora
DOI:
https://doi.org/10.47197/retos.v67.114434Palabras clave:
monitoreo en tiempo real, educación física, compromiso de aprendizaje, motivación, prevención de lesionesResumen
Introducción: Este estudio analizó la eficacia de los sistemas de monitoreo de ejercicios en tiempo real basados en IA para mejorar los programas de educación física. La integración de estas tecnologías tuvo como objetivo aumentar el compromiso, la motivación y la seguridad, reflejando la tendencia hacia entornos de aprendizaje avanzados tecnológicamente.
Objetivo: el objetivo de este estudio fue evaluar empíricamente el impacto de un sistema de IA en el compromiso de aprendizaje, motivación y prevención de lesiones en educación física, comparando los resultados con métodos de entrenamiento tradicionales.
Metodología: la metodología consistió en un experimento controlado con ochenta estudiantes de educación física, asignados a grupos de control y experimental. Se recopilaron datos mediante encuestas, evaluaciones de desempeño e informes de lesiones, y se aplicaron análisis estadísticos con pruebas t de muestras independientes y pruebas de chi-cuadrado.
Resultados: los resultados indicaron un compromiso y motivación significativamente mayores en el grupo experimental, que utilizó el sistema de IA. Además, este grupo experimentó menos lesiones, demostrando el potencial del sistema para mejorar la seguridad.
Discusión: otros estudios han destacado de manera similar el papel de la tecnología en la mejora de los resultados educativos, aunque pocos se han centrado específicamente en la educación física. Los hallazgos de este estudio están en línea con investigaciones más amplias que respaldan la adopción de IA en entornos educativos.
Conclusiones: las conclusiones confirman que los sistemas de monitoreo impulsados por IA mejoran significativamente el compromiso, la motivación y la seguridad de los estudiantes en la educación física, sugiriendo que tales tecnologías pueden ser adiciones valiosas a los currículos educativos para mejorar las experiencias y resultados de aprendizaje.
Citas
Kaliisa, R., Lopez-Pernas, S., Misiejuk, K., Damsa, C., Sobocinski, M., Jarvela, S., & Saqr, M. (2025). A Topical Review of Research in Computer-Supported Collaborative Learning: Questions and Possibilities. Computers & Education, 105246. https://doi.org/10.1016/j.compedu.2025.105246
Kang, J., Xu, X., & Yan, L. (2024). Leveraging affordances of immersive technology-supported collaborative learning (ITCL): A systematic review. Education and Information Technologies, 1-41. https://doi.org/10.1007/s10639-024-13079-y
Deng, C., Feng, L., & Ye, Q. (2024). Smart physical education: Governance of school physical education in the era of new generation of information technology and knowledge. Journal of the Knowledge Economy, 15(3), 13857-13889. https://doi.org/10.1007/s13132-023-01668-0
Liu, Y., Sathishkumar, V. E., & Manickam, A. (2022). Augmented reality technology based on school physical education training. Computers and Electrical Engineering, 99, 107807. https://doi.org/10.1016/j.compeleceng.2022.107807
Cao, F., Xiang, M., Chen, K., & Lei, M. (2022). Intelligent physical education teaching tracking system based on multimedia data analysis and artificial intelligence. Mobile Information Systems, 2022(1), 7666615. https://doi.org/10.1155/2022/7666615
Xie, M. (2021). Design of a physical education training system based on an intelligent vision. Computer Applications in Engineering Education, 29(3), 590-602. https://doi.org/10.1002/cae.22259
Wang, C., & Du, C. (2022). Optimization of physical education and training system based on machine learning and Internet of Things. Neural Computing and Applications, 1-16. https://doi.org/10.1007/s00521-021-06278-y
Hannan, A., Shafiq, M. Z., Hussain, F., & Pires, I. M. (2021). A portable smart fitness suite for real-time exercise monitoring and posture correction. Sensors, 21(19), 6692. https://doi.org/10.3390/s21196692
Ren, G., Huang, Z., You, S., Lin, W., Huang, T., Wang, G., & Lee, J. H. (2025). Enhancing Motor Skills and Coordination with Visual-Haptic Feedback in Ball Sport Training. IEEE Access. https://doi.org/10.1109/ACCESS.2025.3547159
Zhang, Z., Chen, L., Qin, Z., He, J., Gao, C., Sun, J., ... & Li, D. (2024). Effects of functional correction training on movement patterns and physical fitness in male college students. PeerJ, 12, e16878. https://doi.org/10.7717/peerj.16878
Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. Measurement: Sensors, 32, 101054. https://doi.org/10.1016/j.measen.2024.101054
Hsia, L. H., Hwang, G. J., & Hwang, J. P. (2024). AI-facilitated reflective practice in physical education: An auto-assessment and feedback approach. Interactive Learning Environments, 32(9), 5267-5286. https://doi.org/10.1080/10494820.2023.2212712
Wang, J., Yang, Y., Liu, H., & Jiang, L. (2024). Enhancing the college and university physical education teaching and learning experience using virtual reality and particle swarm optimization. Soft Computing, 28(2), 1277-1294. https://doi.org/10.1007/s00500-023-09528-4
Kadhim, M. A. A., Mashi, A. A. A., Al-Diwan, L. H., & Ghazi, M. A. (2024). Understanding the Mechanism of Conducting Benchmark Test for the Infrastructure of Physical Education Curricula in the Age of Artificial Intelligence. International Journal of Elementary Education, 13(1), 8-12. https://doi.org/10.11648/j.ijeedu.20241301.12
Trendowski, T. (2025). A Checklist for Using Generative Artificial Intelligence to Create Lesson Plans in K–12 Physical Education. Journal of Physical Education, Recreation & Dance, 96(2), 15-27. https://doi.org/10.1080/07303084.2024.2437988.
Cui, G. (2025). Empowering High-Quality Development of Sports Qualities and Physical Health of Primary and Secondary School Students in the Region Through Digitalization. In Digital Transformation of Regional Education in China (pp. 179-186). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-8144-7_25
Arif, Y. M., Nugroho, F., Aini, Q., Fauzan, A. C., & Garcia, M. B. (2025). A Systematic Literature Review of Serious Games for Physical Education: Technologies, Implementations, and Evaluations. Global Innovations in Physical Education and Health, 1-36. https://doi.org/10.4018/979-8-3693-3952-7.ch001
Jun, W., Iqbal, M. S., Abbasi, R., Omar, M., & Huiqin, C. (2024). Web-semantic-driven machine learning and blockchain for transformative change in the future of physical education. International Journal on Semantic Web and Information Systems (IJSWIS), 20(1), 1-16. https://doi.org/10.4018/IJSWIS.337961
Kotte, H., Daiber, F., Kravcik, M., & Duong-Trung, N. (2024, June). Fitsight: Tracking and feedback engine for personalized fitness training. In Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization (pp. 223-231). https://doi.org/10.1145/3627043.3659547
Mitra, U., & Rehman, S. U. (2025). Significance of AI/ML Wearable Technologies for Education and Teaching. In Wearable Devices and Smart Technology for Educational Teaching Assistance (pp. 1-26). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7817-5.ch001
Mateus, N., Abade, E., Coutinho, D., Gómez, M. Á., Peñas, C. L., & Sampaio, J. (2024). Empowering the Sports Scientist with Artificial Intelligence in Training, Performance, and Health Management. Sensors, 25(1), 139. https://doi.org/10.3390/s25010139
Li, X., Fan, D., Deng, Y., Lei, Y., & Omalley, O. (2024). Sensor fusion-based virtual reality for enhanced physical training. Robotic Intelligence and Automation, 44(1), 48-67. https://doi.org/10.1108/RIA-08-2023-0103
Coskun, H. (2025). A Contactless Real-Time System to Classify Multi-Class Sitting Posture Using Depth Sensor-Based Data. In AI-Driven Innovation in Healthcare Data Analytics (pp. 333-368). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7277-7.ch011
Voltmer, J. B., Froehlich, L., Reich-Stiebert, N., Raimann, J., & Stürmer, S. (2024). Group cohesion and performance in Computer-Supported Collaborative Learning (CSCL): Using assessment analytics to understand the effects of multi-attributional diversity. In Assessment Analytics in Education: Designs, Methods and Solutions (pp. 113-132). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-56365-2_6
Silseth, K., Steier, R., & Arnseth, H. C. (2024). Exploring students’ immersive VR experiences as resources for collaborative meaning making and learning. International Journal of Computer-Supported Collaborative Learning, 19(1), 11-36. https://doi.org/10.1007/s11412-023-09413-0
Yuan, J., Qin, L., Li, Z., Jiang, B., Diao, Y., & Liu, G. (2024, November). From Unilateral Dominance to Collaborative Cooperation: Exploring Intergenerational Cooperative Exergames to Facilitate Physical Exercise for Older Adults. In Companion Publication of the 2024 Conference on Computer-Supported Cooperative Work and Social Computing (pp. 369-375). https://doi.org/10.1145/3678884.3681877
An, P. (2024). Fuzzy Decision Support Systems to Improve the Effectiveness of Training Programs in the Field of Sports Fitness. International Journal of Computational Intelligence Systems, 17(1), 168. https://doi.org/10.1007/s44196-024-00555-z
Ma, S. (2024). Integrating sports education with data analysis and computer technology: A new paradigm for enhanced athletic performance. Applied and Computational Engineering, 57, 178-183. https://doi.org/10.54254/2755-2721/57/20241330
Ramadhan, R., Effendy, F., & Pratama, A. P. (2024). Sports Education on Student Learning Motivation Seen from the Roles Involved in Sport Education Using Handball. Indonesian Journal of Physical Education and Sport Science, 4(1), 22-30.
Ferraz, R., Ribeiro, D., Alves, A. R., Teixeira, J. E., Forte, P., & Branquinho, L. (2024). Using Gamification in Teaching Physical Education: A survey review. Montenegrin Journal of Sports Science & Medicine, 13(1). https://doi.org/10.26773/mjssm.240304
Safitri, R., Wahyuri, A. S., & Ockta, Y. (2024). The Impacts of the Project-Based Learning and Problem-Based Learning Models with Self-Confidence on Students’ Learning Outcomes. Indonesian Research Journal in Education| IRJE|, 8(1), 269-283. https://doi.org/10.22437/irje.v8i1.31480
Lobo, M. D., Tavares, S. M., de Almeida, R. P. P., & Garcia, M. B. (2025). Advancing Precision in Physical Education and Sports Science: A Review of Medical Imaging Methods for Assessing Body Composition. Global Innovations in Physical Education and Health, 293-326. https://doi.org/10.4018/979-8-3693-3952-7.ch011
Song, X. (2024). Physical education teaching mode assisted by artificial intelligence assistant under the guidance of high-order complex network. Scientific Reports, 14(1), 4104. https://doi.org/10.1038/s41598-024-53964-7
Qi, Y., Sajadi, S. M., Baghaei, S., Rezaei, R., & Li, W. (2024). Digital technologies in sports: Opportunities, challenges, and strategies for safeguarding athlete wellbeing and competitive integrity in the digital era. Technology in Society, 102496. https://doi.org/10.1016/j.techsoc.2024.102496
Pilkington, V., Rice, S., Olive, L., Walton, C., & Purcell, R. (2024). Athlete mental health and wellbeing during the transition into elite sport: strategies to prepare the system. Sports medicine-open, 10(1), 24. https://doi.org/10.1186/s40798-024-00690-z
Streetman, A. E., & Heinrich, K. M. (2024). Female empowerment through sport: an exploratory narrative review. Sport in Society, 27(5), 804-819. https://doi.org/10.1080/17430437.2023.2270443
Yılmaz, O., Soylu, Y., Erkmen, N., Kaplan, T., & Batalik, L. (2024). Effects of proprioceptive training on sports performance: a systematic review. BMC Sports Science, Medicine and Rehabilitation, 16(1), 149. https://doi.org/10.1186/s13102-024-00936-z
Breed, R., Lindsay, R., Kittel, A., & Spittle, M. (2024). Content and quality of comparative tactical game-centered approaches in physical education: A systematic review. Review of Educational Research, 00346543241227236. https://doi.org/10.3102/00346543241227236
Washif, J., Pagaduan, J., James, C., Dergaa, I., & Beaven, C. (2024). Artificial intelligence in sport: Exploring the potential of using ChatGPT in resistance training prescription. Biology of sport, 41(2), 209-220. https://doi.org/10.5114/biolsport.2024.132987
Singh, G., George, R. P., Ahmad, N., Hussain, S., Ather, D., & Kler, R. (2024). A deep learning approach for evaluating the efficacy and accuracy of PoseNet for posture detection. International Journal of System Assurance Engineering and Management, 1-10. https://doi.org/10.1007/s13198-024-02530-5
Mishra, S., Bhardwaj, I., Singh, A., Chakraborty, T., & Tripathi, A. (2025). Real-time pose correction and wellness tracking system for enhanced Yoga practice. In Challenges in Information, Communication and Computing Technology (pp. 383-388). CRC Press.
Yadav, S. (2025). Leveraging AI to Enhance Teaching and Learning in Education: The Role of Artificial Intelligence in Modernizing Classroom Practices. In Optimizing Research Techniques and Learning Strategies With Digital Technologies (pp. 211-238). IGI Global Scientific Publishing.
Huang, M., & Yongquan, T. (2025). Tech‐driven excellence: A quantitative analysis of cutting‐edge technology impact on professional sports training. Journal of Computer Assisted Learning, 41(1), e13082. https://doi.org/10.1111/jcal.13082
Li, Z., Wang, L., & Wu, X. (2025). Artificial intelligence based virtual gaming experience for sports training and simulation of human motion trajectory capture. Entertainment Computing, 52, 100828. https://doi.org/10.1016/j.entcom.2024.100828
Geisen, M., & Klatt, S. (2022). Real-time feedback using extended reality: A current overview and further integration into sports. International Journal of Sports Science & Coaching, 17(5), 1178-1194. https://doi.org/10.1177/17479541211051006
Manninen, M., & Campbell, S. (2022). The effect of the Sport Education Model on basic needs, intrinsic motivation and prosocial attitudes: A systematic review and multilevel meta-analysis. European Physical Education Review, 28(1), 78-99. https://doi.org/10.1177/1356336X211017938
Fidan, M., & Gencel, N. (2022). Supporting the instructional videos with chatbot and peer feedback mechanisms in online learning: The effects on learning performance and intrinsic motivation. Journal of Educational Computing Research, 60(7), 1716-1741. https://doi.org/10.1177/07356331221077901
Schüler, J., Wolff, W., & Duda, J. L. (2023). Intrinsic motivation in the context of sports. In Sport and exercise psychology: theory and application (pp. 171-192). Cham: Springer International Publishing.
Yin, J., Goh, T. T., & Hu, Y. (2024). Using a chatbot to provide formative feedback: A longitudinal study of intrinsic motivation, cognitive load, and learning performance. IEEE Transactions on Learning Technologies, 17, 1378-1389.
Amaro, N., Monteiro, D., Rodrigues, F., Matos, R., Jacinto, M., Cavaco, B., ... & Antunes, R. (2023). Task-involving motivational climate and enjoyment in youth male football athletes: The mediation role of self-determined motivation. International Journal of Environmental Research and Public Health, 20(4), 3044. https://doi.org/10.3390/ijerph20043044
Uhm, J. P., Kim, S., & Lee, H. W. (2023). Stimulating suspense in gamified virtual reality sports: Effect on flow, fun, and behavioral intention. International Journal of Human–Computer Interaction, 39(19), 3846-3858. https://doi.org/10.1080/10447318.2022.2107782
Nur, L., Hong, F., Al Ardha, M. A., Burhaein, E., & Malik, A. A. (2023). Direct instruction with task sheet-based learning model: an alternative approach to encourage learning motivation during the Covid-19 crisis. International Journal of Instruction, 16(3), 843-854. https://e-iji.net/ats/index.php/pub/article/view/110
Tang, Y., Zhang, X., & Zan, S. (2024). Exploring e-sports fans’ motivation for watching live streams based on self-determination theory. Scientific Reports, 14(1), 13858. https://doi.org/10.1038/s41598-024-64712-2
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Nurzhamal Oshanova, Guldina Bolshevikovna, Nazym Tekesbayeva, Shugyla Turashova, Gulzat Anuarbekova, Assel Bukanova

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess