El ejercicio físico como clave para activar la quema de grasa a través de la activación de la proteína desacopladora 1 (UCP1) en el tejido adiposo: una revisión del alcance
DOI:
https://doi.org/10.47197/retos.v66.114284Palabras clave:
Ejercicio físico, aptitud física, bat, ucp1, ácido grasoResumen
Antecedentes: Además de ser un elemento importante relacionado con la termogénesis, el ejercicio es una excelente intervención para reducir la obesidad. Investigaciones recientes indican que las "exerkinas", o sustancias químicas liberadas durante la actividad física, pueden cambiar la activación del tejido adiposo marrón (BAT) y el oscurecimiento del tejido adiposo blanco. Sin embargo, no se comprenden bien los procesos compuestos por los cuales la activación del BAT se ve afectada por las variables periféricas provocadas por el ejercicio. Además, no se comprende bien el efecto del impacto de la actividad física en la activación del BAT. Una proteína importante a cargo de la termogénesis adaptativa que se produce durante el oscurecimiento del tejido adiposo blanco y marrón es la proteína desacopladora 1 (UCP1). Objetivo: Este estudio tiene como objetivo analizar el efecto del ejercicio físico en el aumento de la proteína desacopladora 1 (UCP1) en ratones.
Materiales y métodos: Buscamos en varias bases de datos bibliográficas para nuestra investigación de revisión sistemática, incluidas Pubmed, Web of Science y Science Direct. Artículos que abordaron la actividad física y la UCP1 que se publicaron en los últimos cinco años. Se utilizaron las bases de datos Web of Science, Pubmed y Science Direct para localizar 380 artículos publicados. Para esta revisión sistemática, se seleccionaron y revisaron diez artículos que cumplían los criterios de inclusión. En este estudio se utilizaron los elementos de informe preferidos de revisiones sistemáticas y metaanálisis (PRISMA) para evaluar los procedimientos operativos estándar.
Resultados: Los hallazgos de este estudio indican que se ha demostrado que el ejercicio físico aumenta la expresión de UCP1.
Conclusiones: Se ha demostrado que la actividad física aumenta la expresión de UCP1. El proceso de aumento del metabolismo y la termogénesis se desencadenará por este aumento, para que aumente el gasto energético generado por el tejido adiposo.
Citas
Aldiss, P., Betts, J., Sale, C., Pope, M., Budge, H., & Symonds, M. E. (2018). Exercise-induced ‘browning’ of adipose tissues. Metabolism: Clinical and Experimental, 81, 63–70. https://doi.org/10.1016/j.metabol.2017.11.009
Bartelt, A., Bruns, O. T., Reimer, R., Hohenberg, H., Ittrich, H., Peldschus, K., Kaul, M. G., Tromsdorf, U. I., Weller, H., Waurisch, C., Eychmüller, A., Gordts, P. L. S. M., Rinninger, F., Bruegelmann, K., Freund, B., Nielsen, P., Merkel, M., & Heeren, J. (2011). Brown adipose tissue activity controls triglyceride clearance. Nature Medicine, 17(2), 200–206. https://doi.org/10.1038/nm.2297
Becher, T., Palanisamy, S., Kramer, D. J., Eljalby, M., Marx, S. J., Wibmer, A. G., Butler, S. D., Jiang, C. S., Vaughan, R., Schöder, H., Mark, A., & Cohen, P. (2021). Brown adipose tissue is associated with cardiometabolic health. Nature Medicine, 27(1), 58–65. https://doi.org/10.1038/s41591-020-1126-7
Brondani, L. de A., Assmann, T. S., Duarte, G. C. K., Gross, J. L., Canani, L. H., & Crispim, D. (2012). The role of the uncoupling protein 1 (UCP1) on the development of obesity and type 2 diabetes mellitus. Arquivos Brasileiros de Endocrinologia & Metabologia, 56(4), 215–225. https://doi.org/10.1590/s0004-27302012000400001
Chou, T. J., Lin, L. Y., Lu, C. W., Hsu, Y. J., Huang, C. C., & Huang, K. C. (2024). Effects of aerobic, resistance, and high-intensity interval training on thermogenic gene expression in white adipose tissue in high fat diet induced obese mice. Obesity Research and Clinical Practice, 18(1), 64–72. https://doi.org/10.1016/j.orcp.2024.01.003
Chouchani, E. T., Kazak, L., & Spiegelman, B. M. (2019). New Advances in Adaptive Thermogenesis: UCP1 and Beyond. Cell Metabolism, 29(1), 27–37. https://doi.org/10.1016/j.cmet.2018.11.002
Cohen, P., & Kajimura, S. (2021). The cellular and functional complexity of thermogenic fat. Nature Reviews Molecular Cell Biology, 22(6), 393–409. https://doi.org/10.1038/s41580-021-00350-0
Collins, S. (2022). Adrenergic Receptors and Adipose Tissue Metabolism: Evolution of an Old Story. Annual Review of Physiology, 84, 1–16. https://doi.org/10.1146/annurev-physiol-060721-092939
de Carvalho Picoli, C., Gilio, G. R., Henriques, F., Leal, L. G., Besson, J. C., Lopes, M. A., de Moraes, S. M. F., Hernandes, L., Batista, M. L., & Peres, S. B. (2020). Resistance exercise training induces subcutaneous and visceral adipose tissue browning in Swiss mice. Journal of Applied Physiology, 129(1), 66–74. https://doi.org/10.1152/japplphysiol.00742.2019
de Melo, D. G., Anaruma, C. P., da Cruz Rodrigues, K. C., Pereira, R. M., de Campos, T. D. P., Canciglieri, R. S., Ramos, C. O., Cintra, D. E., Ropelle, E. R., da Silva, A. S. R., Pauli, J. R., & de Moura, L. P. (2022). Strength training alters the tissue fatty acids profile and slightly improves the thermogenic pathway in the adipose tissue of obese mice. Scientific Reports, 12(1), 1–14. https://doi.org/10.1038/s41598-022-10688-w
De Queiroz, K. B., Rodovalho, G. V., Guimarães, J. B., De Lima, D. C., Coimbra, C. C., Evangelista, E. A., & Guerra-Sá, R. (2012). Endurance training blocks uncoupling protein 1 up-regulation in brown adipose tissue while increasing uncoupling protein 3 in the muscle tissue of rats fed with a high-sugar diet. Nutrition Research, 32(9), 709–717. https://doi.org/10.1016/j.nutres.2012.06.020
De Sanctis, J. B., Balda Noria, G., & García, A. H. (2025). Exploring How Adipose Tissue, Obesity, and Gender Influence the Immune Response to Vaccines: A Comprehensive Narrative Review. International Journal of Molecular Sciences, 26(2), 1–31. https://doi.org/10.3390/ijms26020862
Desai, A., Loureiro, Z. Y., Desouza, T., Yang, Q., & Solivan-rivera, J. (2024). cAMP driven UCP1 induction in human adipocytes requires ATGL-catalyzed lipolysis. Molecular Metabolism, 90(October), 102051. https://doi.org/10.1016/j.molmet.2024.102051
Dewal, R. S., & Stanford, K. I. (2019). Effects of exercise on brown and beige adipocytes. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1864(1), 71–78. https://doi.org/10.1016/j.bbalip.2018.04.013
Dinas, P. C., Lahart, I. M., Timmons, J. A., Svensson, P.-A., Koutedakis, Y., Flouris, A. D., & Metsios, G. S. (2017). Effects of physical activity on the link between PGC-1a and FNDC5 in muscle, circulating Ιrisin and UCP1 of white adipocytes in humans: A systematic review. F1000Research, 6(May), 286. https://doi.org/10.12688/f1000research.11107.1
Fedorenko, A., Lishko, P. V., & Kirichok, Y. (2012). Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell, 151(2), 400–413. https://doi.org/10.1016/j.cell.2012.09.010
Feldmann, H. M., Golozoubova, V., Cannon, B., & Nedergaard, J. (2009). UCP1 Ablation Induces Obesity and Abolishes Diet-Induced Thermogenesis in Mice Exempt from Thermal Stress by Living at Thermoneutrality. Cell Metabolism, 9(2), 203–209. https://doi.org/10.1016/j.cmet.2008.12.014
Flouris, A. D., Dinas, P. C., Valente, A., Andrade, C. M. B., Kawashita, N. H., & Sakellariou, P. (2017). Exercise-induced effects on UCP1 expression in classical brown adipose tissue: A systematic review. Hormone Molecular Biology and Clinical Investigation, 31(2), 1–13. https://doi.org/10.1515/hmbci-2016-0048
Foster, D. O., & Frydman, M. L. (1979). Tissue distribution of cold-induced thermogenesis in conscious warm- or cold-acclimated rats reevaluated from changes in tissue blood flow: The dominant role of brown adipose tissue in the replacement of shivering by nonshivering thermogenesis. Canadian Journal of Physiology and Pharmacology, 57(3), 257–270. https://doi.org/10.1139/y79-039
Fuller-Jackson, J. P., & Henry, B. A. (2018). Adipose and skeletal muscle thermogenesis: Studies from large animals. Journal of Endocrinology, 237(3), R99–R115. https://doi.org/10.1530/JOE-18-0090
Garneau, L., Parsons, S. A., Smith, S. R., Mulvihill, E. E., Sparks, L. M., & Aguer, C. (2020). Plasma Myokine Concentrations After Acute Exercise in Non-obese and Obese Sedentary Women. Frontiers in Physiology, 11(February), 1–8. https://doi.org/10.3389/fphys.2020.00018
Garritson, J. D., & Boudina, S. (2021). The Effects of Exercise on White and Brown Adipose Tissue Cellularity, Metabolic Activity and Remodeling. Frontiers in Physiology, 12(November), 1–7. https://doi.org/10.3389/fphys.2021.772894
Golozoubova, V., Hohtola, E., Matthias, A., Jacobsson, A., Cannon, B., & Nedergaard, J. (2001). Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. The FASEB Journal, 15(11), 2048–2050. https://doi.org/10.1096/fj.00-0536fje
Gong, D., Lei, J., He, X., Hao, J., Zhang, F., Huang, X., Gu, W., Yang, X., & Yu, J. (2024). Keys to the switch of fat burning: stimuli that trigger the uncoupling protein 1 (UCP1) activation in adipose tissue. Lipids in Health and Disease , 23(1). https://doi.org/10.1186/s12944-024-02300-z
Gorski, T., Mathes, S., & Krützfeldt, J. (2018). Uncoupling protein 1 expression in adipocytes derived from skeletal muscle fibro/adipogenic progenitors is under genetic and hormonal control. Journal of Cachexia, Sarcopenia and Muscle, 9(2), 384–399. https://doi.org/10.1002/jcsm.12277
Gripp, F., Nava, R. C., Cassilhas, R. C., Esteves, E. A., Magalhães, C. O. D., Dias-Peixoto, M. F., de Castro Magalhães, F., & Amorim, F. T. (2021). HIIT is superior than MICT on cardiometabolic health during training and detraining. European Journal of Applied Physiology, 121(1), 159–172. https://doi.org/10.1007/s00421-020-04502-6
Guo, Y., Zhang, Q., Zheng, L., Shou, J., Zhuang, S., Xiao, W., & Chen, P. (2023). Depot-specific adaption of adipose tissue for different exercise approaches in high-fat diet/streptozocin-induced diabetic mice. Frontiers in Physiology, 14(July), 1–13. https://doi.org/10.3389/fphys.2023.1189528
Huh, J. Y. (2018). The role of exercise-induced myokines in regulating metabolism. Archives of Pharmacal Research, 41(1), 14–29. https://doi.org/10.1007/s12272-017-0994-y
Ikeda, K., & Yamada, T. (2020). UCP1 Dependent and Independent Thermogenesis in Brown and Beige Adipocytes. Frontiers in Endocrinology, 11(July), 1–6. https://doi.org/10.3389/fendo.2020.00498
Jabbour, G., & Iancu, H. D. (2017). High-intensity exercise training does not influence body weight but improves lipid oxidation in obese adults: A 6-week RCT. BMJ Open Sport and Exercise Medicine, 3(1), 3–10. https://doi.org/10.1136/bmjsem-2017-000283
Kajimura, S., Spiegelman, B. M., & Seale, P. (2015). Brown and beige fat: Physiological roles beyond heat generation. Cell Metabolism, 22(4), 546–559. https://doi.org/10.1016/j.cmet.2015.09.007
Kazak, L., Chouchani, E. T., Jedrychowski, M. P., Erickson, B. K., Shinoda, K., Cohen, P., Vetrivelan, R., Lu, G. Z., Laznik-Bogoslavski, D., Hasenfuss, S. C., Kajimura, S., Gygi, S. P., & Spiegelman, B. M. (2015). A Creatine-Driven Substrate Cycle Enhances Energy Expenditure and Thermogenesis in Beige Fat. Cell, 163(3), 643–655. https://doi.org/10.1016/j.cell.2015.09.035
Kazak, L., Chouchani, E. T., Stavrovskaya, I. G., Lu, G. Z., Jedrychowski, M. P., Egan, D. F., Kumari, M., Kong, X., Erickson, B. K., Szpyt, J., Rosen, E. D., Murphy, M. P., Kristal, B. S., Gygi, S. P., & Spiegelman, B. M. (2017). UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 114(30), 7981–7986. https://doi.org/10.1073/pnas.1705406114
Khalafi, M., Mohebbi, H., Symonds, M. E., Karimi, P., Akbari, A., Tabari, E., Faridnia, M., & Moghaddami, K. (2020). The impact of moderate-intensity continuous or high-intensity interval training on adipogenesis and browning of subcutaneous adipose tissue in obese male rats. Nutrients, 12(4). https://doi.org/10.3390/nu12040925
Kianmehr, P., Azarbayjani, M. A., Peeri, M., & Farzanegi, P. (2020). Synergic effects of exercise training and octopamine on peroxisome proliferator-activated receptor-gamma coactivator -1a and uncoupling protein 1 mRNA in heart tissue of rat treated with deep frying oil. Biochemistry and Biophysics Reports, 22(October 2019), 100735. https://doi.org/10.1016/j.bbrep.2020.100735
Kim, H. J., Kim, Y. J., & Seong, J. K. (2022). AMP-activated protein kinase activation in skeletal muscle modulates exercise-induced uncoupled protein 1 expression in brown adipocyte in mouse model. Journal of Physiology, 600(10), 2359–2376. https://doi.org/10.1113/JP282999
Kim, N., Kim, J., Yoo, C., Lim, K., Akimoto, T., & Park, J. (2018). Effect of acute mid-intensity treadmill exercise on the androgen hormone level and uncoupling protein-1 expression in brown fat tissue of mouse. Journal of Exercise Nutrition & Biochemistry, 22(1), 15–21. https://doi.org/10.20463/jenb.2018.0003
Kim, S. H., & Plutzky, J. (2016). Brown fat and browning for the treatment of obesity and related metabolic disorders. Diabetes and Metabolism Journal, 40(1), 12–21. https://doi.org/10.4093/dmj.2016.40.1.12
Klingenberg, M., Echtay, K. S., Bienengraeber, M., Winkler, E., & Huang, S. G. (1999). Structure–Function Relationship in UCP1. International Journal of Obesity, 23(October 2014), S24–S29. https://doi.org/10.1038/sj.ijo.0800939
Ko, E. Y., Sabanegh, E. S., & Agarwal, A. (2014). Male infertility testing: Reactive oxygen species and antioxidant capacity. Fertility and Sterility, 102(6), 1518–1527. https://doi.org/10.1016/j.fertnstert.2014.10.020
Koliaki, C., Dalamaga, M., & Liatis, S. (2023). Update on the Obesity Epidemic: After the Sudden Rise, Is the Upward Trajectory Beginning to Flatten? Current Obesity Reports, 12(4), 514–527. https://doi.org/10.1007/s13679-023-00527-y
Kozak, L. P., & Anunciado-Koza, R. (2008). UCP1: Its involvement and utility in obesity. International Journal of Obesity, 32, S32–S38. https://doi.org/10.1038/ijo.2008.236
Leal, L. G., Lopes, M. A., & Batista, M. L. (2018). Physical exercise-induced myokines and muscle-adipose tissue crosstalk: A review of current knowledge and the implications for health and metabolic diseases. Frontiers in Physiology, 9(SEP), 1–17. https://doi.org/10.3389/fphys.2018.01307
Lehnig, A. C., & Stanford, K. I. (2018). Exercise-induced adaptations to white and brown adipose tissue. Journal of Experimental Biology, 121. https://doi.org/10.1242/jeb.161570
Leskinen, T., Lima Passos, V., Dagnelie, P. C., Savelberg, H. H. C. M., De Galan, B. E., Eussen, S. J. P. M., Stehouwer, C. D. A., Stenholm, S., & Koster, A. (2023). Daily Physical Activity Patterns and Their Associations with Cardiometabolic Biomarkers: The Maastricht Study. Medicine and Science in Sports and Exercise, 55(5), 837–846. https://doi.org/10.1249/MSS.0000000000003108
Li, Y., & Fromme, T. (2022). Uncoupling Protein 1 Does Not Produce Heat without Activation. International Journal of Molecular Sciences, 23(5). https://doi.org/10.3390/ijms23052406
Liu, D., Chan, S. L., De Souza-Pinto, N. C., Slevin, J. R., Wersto, R. P., Zhan, M., Mustafa, K., De Cabo, R., & Mattson, M. P. (2006). Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress. NeuroMolecular Medicine, 8(3), 389–413. https://doi.org/10.1385/NMM:8:3:389
Mai, S., Grugni, G., Mele, C., Vietti, R., Vigna, L., Sartorio, A., Aimaretti, G., Scacchi, M., & Marzullo, P. (2020). Irisin levels in genetic and essential obesity: clues for a potential dual role. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-57855-5
Moienneia, N., & Attarzadeh Hosseini, S. R. (2016). Acute and chronic responses of metabolic myokine to different intensities of exercise in sedentary young women. Obesity Medicine, 1, 15–20. https://doi.org/10.1016/j.obmed.2015.12.002
Morrison, S. F. (2016). Central control of body temperature. F1000Research, 5(May), 1–10. https://doi.org/10.12688/F1000RESEARCH.7958.1
Müller, M. J., Enderle, J., & Bosy-Westphal, A. (2016). Changes in Energy Expenditure with Weight Gain and Weight Loss in Humans. Current Obesity Reports, 5(4), 413–423. https://doi.org/10.1007/s13679-016-0237-4
Okamatsu-Ogura, Y., Fukano, K., Tsubota, A., Uozumi, A., Terao, A., Kimura, K., & Saito, M. (2013). Thermogenic ability of uncoupling protein 1 in beige adipocytes in mice. PLoS ONE, 8(12), 1–10. https://doi.org/10.1371/journal.pone.0084229
Porter, C. (2017). Quantification of UCP1 function in human brown adipose tissue. Adipocyte, 6(2), 167–174. https://doi.org/10.1080/21623945.2017.1319535
Purdom, T., Kravitz, L., Dokladny, K., & Mermier, C. (2018). Understanding the factors that effect maximal fat oxidation. Journal of the International Society of Sports Nutrition, 15(1), 1–10. https://doi.org/10.1186/s12970-018-0207-1
Ramsden, D. B., Ho, P. W. L., Ho, J. W. M., Liu, H. F., So, D. H. F., Tse, H. M., Chan, K. H., & Ho, S. L. (2012). Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): Structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction. Brain and Behavior, 2(4), 468–478. https://doi.org/10.1002/brb3.55
Reisi, J., Ghaedi, K., Rajabi, H., & Mohammad Marandi, S. (2016). Can resistance exercise alter irisin levels and expression profiles of fndc5 and ucp1 in rats? Asian Journal of Sports Medicine, 7(4). https://doi.org/10.5812/asjsm.35205
Rodrigues, K. C. d. C., Pereira, R. M., de Campos, T. D. P., de Moura, R. F., da Silva, A. S. R., Cintra, D. E., Ropelle, E. R., Pauli, J. R., de Araújo, M. B., & de Moura, L. P. (2018). The role of physical exercise to improve the browning of white adipose tissue via POMC neurons. Frontiers in Cellular Neuroscience, 12(March), 1–7. https://doi.org/10.3389/fncel.2018.00088
Roesler, A., & Kazak, L. (2020). UCP1-independent thermogenesis. Biochemical Journal, 477(3), 709–725. https://doi.org/10.1042/BCJ20190463
Said, M. A., Abdelmoneim, M. A., Alibrahim, M. S., & Kotb, A. A. H. (2021). Aerobic training, resistance training, or their combination as a means to fight against excess weight and metabolic syndrome in obese students — which is the most effective modality? A randomized controlled trial. Applied Physiology, Nutrition and Metabolism, 46(8), 952–963. https://doi.org/10.1139/apnm-2020-0972
Said, M. A., Alhumaid, M. M., Atta, I. I., Al-Sababha, K. M., Abdelrahman, M. A., & Alibrahim, M. S. (2022). Lower fitness levels, higher fat-to-lean mass ratios, and lower cardiorespiratory endurance are more likely to affect the body mass index of Saudi children and adolescents. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.984469
Sanchez-Delgado, G., Martinez-Tellez, B., Olza, J., Aguilera, C. M., Gil, Á., & Ruiz, J. R. (2015). Role of exercise in the activation of brown adipose tissue. Annals of Nutrition and Metabolism, 67(1), 21–32. https://doi.org/10.1159/000437173
Shirvani, H., & Arabzadeh, E. (2020). Metabolic cross-talk between skeletal muscle and adipose tissue in high-intensity interval training vs. moderate-intensity continuous training by regulation of PGC-1α. Eating and Weight Disorders, 25(1), 17–24. https://doi.org/10.1007/s40519-018-0491-4
Simcox, J., Geoghegan, G., Maschek, J. A., Bensard, C. L., Pasquali, M., Miao, R., Lee, S., Jiang, L., Huck, I., Kershaw, E. E., Donato, A. J., Apte, U., Longo, N., Rutter, J., Schreiber, R., Zechner, R., Cox, J., & Villanueva, C. J. (2017). Global Analysis of Plasma Lipids Identifies Liver-Derived Acylcarnitines as a Fuel Source for Brown Fat Thermogenesis. Cell Metabolism, 26(3), 509-522.e6. https://doi.org/10.1016/j.cmet.2017.08.006
Su, D., Jiang, T., Song, Y., Li, D., Zhan, S., Zhong, T., Guo, J., Li, L., Zhang, H., & Wang, L. (2025). Identification of a distal enhancer of Ucp1 essential for thermogenesis and mitochondrial function in brown fat. Communications Biology, 8(1), 31. https://doi.org/10.1038/s42003-025-07468-3
Sugiharto, Sakti Adji, B., Merawati, D., & Pranoto, A. (2021). The increase of uncoupling protein-1 expression after moderate intensity continuous exercises in obese females. Jurnal SPORTIF : Jurnal Penelitian Pembelajaran, 7(2), 194–205. https://doi.org/10.29407/js_unpgri.v7i2.15932
Sugiharto, Susanto, H., Andiana, O., & Merawati, D. (2019). Caloric Regulation Linked Thermogenesis in Acute Submaximal Intensity Exercise Model as the Effect of Audio Frequency Exposure. IOP Conference Series: Materials Science and Engineering, 515(1). https://doi.org/10.1088/1757-899X/515/1/012069
Takaishi, K., Oshima, T., Eto, H., Nishihira, M., Nguyen, S. T., Ochi, R., Fujita, N., & Urakawa, S. (2021). Impact of exercise and detraining during childhood on brown adipose tissue whitening in obesity. Metabolites, 11(10). https://doi.org/10.3390/metabo11100677
Vidal, P., & Stanford, K. I. (2020). Exercise-Induced Adaptations to Adipose Tissue Thermogenesis. Frontiers in Endocrinology, 11(April), 1–12. https://doi.org/10.3389/fendo.2020.00270
Wang, W., & Seale, P. (2016). Control of brown and beige fat development. Nature Reviews Molecular Cell Biology, 17(11), 691–702. https://doi.org/10.1038/nrm.2016.96
Wibawa, J. C., Arifin, M. Z., & Herawati, L. (2021). Ascorbic Acid Drink after Submaximal Physical Activity can Maintain the Superoxide Dismutase Levels in East Java Student Regiment. Indian Journal of Forensic Medicine & Toxicology, 15(3), 3383–3392. https://doi.org/10.37506/ijfmt.v15i3.15824
Xiao, M., Zhang, Y., & Xu, X. (2023). Calorie Restriction Combined with High-Intensity Interval Training Promotes Browning of White Adipose Tissue by Activating the PPARγ/PGC-1α/UCP1 Pathway. Alternative Therapies in Health and Medicine, 29(3), 134–139.
Yin, R., Ma, Y., Zhang, N., Yang, L., & Zhao, D. (2022). Combined effects of voluntary running and liraglutide on glucose homeostasis, fatty acid composition of brown adipose tissue phospholipids, and white adipose tissue browning in db/db mice. Chinese Journal of Physiology, 65(3), 117–124. https://doi.org/10.4103/cjp.cjp-87-21
Zhu, Y., Qi, Z., & Ding, S. (2022). Exercise-Induced Adipose Tissue Thermogenesis and Browning: How to Explain the Conflicting Findings? International Journal of Molecular Sciences, 23(21). https://doi.org/10.3390/ijms232113142
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Dany Pramuno Putra, Junian Cahyanto Wibawa, Baskoro Nugroho Putro

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess