La compresión neumática intermitente de alta presión aplicada inmediatamente después del ejercicio físico reduce eficazmente la fatiga y mejora el rendimiento: un estudio preliminar

Autores/as

  • Ahmad Assagaf Rahmat Universitas Airlangga https://orcid.org/0000-0001-8818-186X
  • Gadis Meinar Sari Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga
  • Mohammad Fathul Qorib Department of Medical Pharmacology, Faculty of Medicine, Universitas Airlangga https://orcid.org/0000-0002-4600-6649
  • Nura Maulida Isna Master Program of Sports Health Science, Faculty of Medicine, Universitas Airlangga
  • Oky Dwi Silviyanti Master Program of Sports Health Science, Faculty of Medicine, Universitas Airlangga
  • José Vicente García-Jiménez University of Murcia https://orcid.org/0000-0001-7731-2609
  • Awang Firmansyah Department of Sport Science, Faculty of Sport and Health Science, Universitas Negeri Surabaya

DOI:

https://doi.org/10.47197/retos.v66.113503

Palabras clave:

Lactato en sangre, compresión neumática intermitente, fatiga muscular, actuación, ejercicio

Resumen

Introducción: El uso de la compresión neumática intermitente (CNI) ha ganado popularidad en el mundo del deporte como uno de los métodos de recuperación adecuados para mejorar el rendimiento de los atletas y acelerar la recuperación. Sin embargo, los beneficios de la CNI como método de recuperación son aún muy limitados.

Objetivo: Este estudio tiene como objetivo investigar más a fondo los efectos del uso de la CIP de alta presión en la recuperación de la fatiga y el rendimiento después del ejercicio físico.

Metodología: Catorce sujetos se dividieron en dos grupos, cada uno compuesto por siete participantes: el grupo de compresión neumática intermitente (CNI), que recibió la intervención de CNI, y el grupo de recuperación pasiva (PR), que no recibió ninguna intervención. Ambos grupos realizaron entrenamiento pliométrico, y se efectuaron mediciones de los niveles de lactato en sangre, de la potencia explosiva de las piernas y de la altura del salto vertical antes y después de la recuperación. En el análisis de datos se utilizaron análisis descriptivos, la prueba t de muestras pareadas y la prueba t de muestras independientes.

Resultados: Los resultados mostraron diferencias significativas en los niveles de lactato en sangre (p=0.002) y en la altura del salto vertical (p=0.006) entre el grupo de recuperación con CNI y el grupo de PR después de la recuperación. Aunque se observó un aumento en la potencia explosiva de las piernas tras la recuperación, no se encontraron diferencias estadísticamente significativas entre el grupo de recuperación con CNI y el grupo con PR (p=0.496).

Conclusión: El uso de CIP de alta presión después del ejercicio físico es significativamente más eficaz que la recuperación pasiva en términos de reducción de los niveles de lactato en sangre y de mejora de la altura de salto vertical. Aunque se produjo un ligero aumento de la potencia explosiva de las piernas, este cambio no fue estadísticamente significativo; no obstante, sigue siendo digno de mención.

Citas

Almeida, F., Padial, P., Bonitch-Góngora, J., de la Fuente, B., Schoenfeld, B. J., Morales-Artacho, A. J., Be-navente, C., & Feriche, B. (2021). Effects of Power-Oriented Resistance Training During an Alti-tude Camp on Strength and Technical Performance of Elite Judokas. Frontiers in physiology, 12, 606191. https://doi.org/10.3389/fphys.2021.606191.

Artés, A., Ferrer-Ramos, P., Javierre, C., Viscor, G., & García, I. (2024). Effects of intermittent pneumatic compression on the recovery of cardiovascular parameters after repeated sprint exercise. Eu-ropean Journal of Applied Physiology, 124(4), 1037–1048. https://doi.org/10.1007/s00421-023-05333-x.

Avandi, R. I., Rochmania, A., Nirwansyah, W. T., Septiani Mustar, Y., Roro, R., Arisanti, S., Pramono, B. A., & Pranoto, A. (2024). Optimization of Athlete Recovery Strategies: Analysis of Massage Met-hods To Determine The Best Approach After High-Intensity Interval Training Optimización de las estrategias de recuperación de los atletas: análisis de métodos de masaje para determinar el mejor enfoque después del entrenamiento en intervalos de alta intensidad. Retos, 57, 125–130. https://doi.org/https://doi.org/10.47197/retos.v57.103963.

Bartoloni, B., Mannelli, M., Gamberi, T., & Fiaschi, T. (2024). The Multiple Roles of Lactate in the Skele-tal Muscle. Cells, 13(14), 1177. https://doi.org/10.3390/cells13141177

Broatch, J. R., Bishop, D. J., & Halson, S. (2018). Lower limb sports compression garments improve muscle blood flow and exercise performance during repeated-sprint cycling. International Journal of Sports Physiology and Performance, 13(7), 882–890. https://doi.org/10.1123/ijspp.2017-0638.

Byrd, B.R., Ramos, J.S., Drummond, C., Specht, J.W., Valenciana, A.K., & Dalleck, L.C. (2020). Post-exercise Passive Heating Strategies Improve VO2max, Running Economy, And Lactate Thresh-old. Medicine & Science in Sports & Exercise, 52(7S), 971-972, https://doi.org/10.1249/01.mss.0000686132.80006.6f.

Cairns S. P. (2006). Lactic acid and exercise performance : culprit or friend?. Sports medicine (Auck-land, N.Z.), 36(4), 279–291. https://doi.org/10.2165/00007256-200636040-00001.

Cochrane, D. J., Booker, H. R., Mundel, T., & Barnes, M. J. (2013). Does intermittent pneumatic leg com-pression enhance muscle recovery after strenuous eccentric exercise? International Journal of Sports Medicine, 34(11), 969–974. https://doi.org/10.1055/s-0033-1337944.

Collings, T. J., Lima, Y. L., Dutaillis, B., & Bourne, M. N. (2024). Concurrent validity and test–retest relia-bility of VALD ForceDecks’ strength, balance, and movement assessment tests. Journal of Sci-ence and Medicine in Sport, 27(8), 572–580. https://doi.org/10.1016/j.jsams.2024.04.014.

Cooper, C. N., Dabbs, N. C., Davis, J., & Sauls, N. M. (2020). Effects of Lower-Body Muscular Fatigue on Vertical Jump and Balance Performance. Journal of Strength and Conditioning Research, 34(10), 2903–2910. https://doi.org/10.1519/JSC.0000000000002882.

Draper, S. N., Kullman, E. L., Sparks, K. E., Little, K., & Thoman, J. (2020). Effects of Intermittent Pneu-matic Compression on Delayed Onset Muscle Soreness (DOMS) in Long Distance Runners. In-ternational journal of exercise science, 13(2), 75–86. https://doi.org/10.70252/HSPN3402.

Edholm, P., Ørtenblad, N., Holmberg, H. C., & Sperlich, B. (2024). Optimizing recovery strategies for winter athletes: insights for Milano-Cortina 2026 Olympic Games. Sport Sciences for Health, 20, 1169–1182. https://doi.org/10.1007/s11332-024-01245-1.

Galaz-Campos, D., Olivares-Arancibia, J., Solis-Urra, P., Suarez-Cadenas, E., Santos-Lozano, A., Rodrí-guez-Rodríguez, F., & Cristi-Montero, C. (2021). Effect of High-Intensity whole body vibration on blood lactate removal and heart rate after an all- out test in active young men Efecto de las vibraciones de alta intensidad de cuerpo completo sobre la remoción del lactato sanguíneo y la frecuencia cardiaca luego de una prueba máxima en hombres activos jóvenes. Retos, 39, 471–476. https://doi.org/https://doi.org/10.47197/retos.v0i39.78441.

Gao, L., Ye, J., Bálint, K., Radak, Z., Mao, Z., & Gu, Y. (2023). Biomechanical effects of exercise fatigue on the lower limbs of men during the forward lunge. Frontiers in physiology, 14, 1182833. https://doi.org/10.3389/fphys.2023.1182833.

Heishman, A., Brown, B., Daub, B., Miller, R., Freitas, E., & Bemben, M. (2019). The Influence of Coun-termovement Jump Protocol on Reactive Strength Index Modified and Flight Time: Contrac-tion Time in Collegiate Basketball Players. Sports (Basel, Switzerland), 7(2), 37. https://doi.org/10.3390/sports7020037.

Heishman, A. D., Daub, B. D., Miller, R. M., Freitas, E. D. S., Frantz, B. A., & Bemben, M. G. (2020). Coun-termovement Jump Reliability Performed With and Without an Arm Swing in NCAA Division 1 Intercollegiate Basketball Players. Journal of strength and conditioning research, 34(2), 546–558. https://doi.org/10.1519/JSC.0000000000002812.

Hoffman, M. D., Badowski, N., Chin, J., & Stuempfle, K. J. (2016). A randomized controlled trial of mas-sage and pneumatic compression for ultramarathon recovery. Journal of Orthopaedic and Sports Physical Therapy, 46(5), 320–326. https://doi.org/10.2519/jospt.2016.6455.

Kaesaman, N., & Eungpinichpong, W. (2019). The acute effect of traditional thai massage on recovery from fatigue in basketball players. International Journal of GEOMATE, 16(55), 53–58. https://doi.org/10.21660/2019.55.4656.

Kang, S. R., Min, J. Y., Yu, C., & Kwon, T. K. (2017). Effect of whole body vibration on lactate level recov-ery and heart rate recovery in rest after intense exercise. Technology and Health Care, 25(S1), S115–S123. https://doi.org/10.3233/THC-171313.

Keck, N. A., Cuddy, J. S., Hailes, W. S., Dumke, C. L., & Ruby, B. C. (2015). Effects of Commercially Avail-able Pneumatic Compression on Muscle Glycogen Recovery After Exercise. Journal of Strength and Conditioning Research, 29(2), 379–385. https://doi.org/10.1519/JSC.000000000000077.

Hanson, E., Stetter, K., Li, R., & Thomas, A. (2013). An Intermittent Pneumatic Compression Device Re-duces Blood Lactate Concentrations More Effectively Than Passive Recovery after Wingate Testing. Journal of Athletic Enhancement, 2(3), 1-4. https://doi.org/10.4172/2324-9080.1000115.

Lee, M. C., Hsu, Y. J., Shen, S. Y., Ho, C. S., & Huang, C. C. (2023). A functional evaluation of anti-fatigue and exercise performance improvement following vitamin B complex supplementation in healthy humans, a randomized double-blind trial. International Journal of Medical Sciences, 20(10), 1272–1281. https://doi.org/10.7150/ijms.86738.

Lees, A., Vanrenterghem, J., & Clercq, D. De. (2004). Understanding how an arm swing enhances per-formance in the vertical jump. Journal of Biomechanics, 37(12), 1929–1940. https://doi.org/10.1016/j.jbiomech.2004.02.021.

Maia, F., Machado, M. V. B., Silva, G., Nakamura, F. Y., & Ribeiro, J. (2024a). Hemodynamic Effects of Intermittent Pneumatic Compression on Athletes: A Double-Blinded Randomized Crossover Study. International Journal of Sports Physiology and Performance, 19(9), 932–938. https://doi.org/10.1123/ijspp.2024-0017.

Maia, F., Nakamura, F. Y., Sarmento, H., Marcelino, R., & Ribeiro, J. (2024). Effects of lower-limb inter-mittent pneumatic compression on sports recovery: A systematic review and meta-analysis. Biology of sport, 41(4), 263–275. https://doi.org/10.5114/biolsport.2024.133665.

Malm, C., Jakobsson, J., & Isaksson, A. (2019). Physical Activity and Sports-Real Health Benefits: A Re-view with Insight into the Public Health of Sweden. Sports (Basel, Switzerland), 7(5), 127. https://doi.org/10.3390/sports7050127.

Marcello, R. T., Fortini, L., & Greer, B. K. (2019). Intermittent Pneumatic Compression Boot Use Ele-vates Blood Lactate During Subsequent Exercise. International journal of exercise science, 12(2), 385–392. https://doi.org/10.70252/ROTS2193.

Martin, J. S., Friedenreich, Z. D., Borges, A. R., & Roberts, M. D. (2015). Preconditioning with peristaltic external pneumatic compression does not acutely improve repeated wingate performance nor does it alter blood lactate concentrations during passive recovery compared with sham. Ap-plied Physiology, Nutrition and Metabolism, 40(11), 1214–1217. https://doi.org/10.1139/apnm-2015-0247.

McDougle, J. M., Mangine, G. T., Townsend, J. R., Jajtner, A. R., & Feito, Y. (2023). Acute physiological outcomes of high-intensity functional training: a scoping review. PeerJ, 11, e14493. https://doi.org/10.7717/peerj.14493.

Mirzaei, B., Asghar Norasteh, A., Saez De Villarreal, E., & Asadi, A. (2014). Effects Of Six Weeks Of Depth Jump Vs. Countermovement Jump Training On Sand On Muscle Soreness And Performance. Ki-nesiology, 46(1), 97–108.

Nalbandian, M., & Takeda, M. (2016). Lactate as a Signaling Molecule That Regulates Exercise-Induced Adaptations. Biology, 5(4), 38. https://doi.org/10.3390/biology5040038.

Nasrulloh, A., Deviana, P., Yuniana, R., & Pratama, K. W. (2021). The Effect of Squat Training and Leg Length in Increasing The Leg Power of Volleyball Extracurricular Participants. Physical Educa-tion Theory and Methodology, 21(3), 244–252. https://doi.org/10.17309/TMFV.2021.3.08.

Needs, D., Blotter, J., Cowan, M., Fellingham, G., Johnson, A. W., & Feland, J. B. (2023). Effect of Local-ized Vibration Massage on Popliteal Blood Flow. Journal of clinical medicine, 12(5), 2047. https://doi.org/10.3390/jcm12052047.

Overmayer, R. G., & Driller, M. W. (2018). Pneumatic compression fails to improve performance re-covery in trained cyclists. International Journal of Sports Physiology and Performance, 13(4), 490–495. https://doi.org/10.1123/ijspp.2017-0207.

Razeghi, M., & Nouri, H. (2015). Comparison of the Effects of Massage and Cryotherapy on the Knee Extensor Muscles Fatigue and Isokinetic Parameters in Soccer Players. Journal of Rehabilita-tion Sciences and Research, 2, 1–7. https://doi.org/https://doi.org/10.30476/jrsr.2015.41064.

Sands, W. A., McNeal, J. R., Murray, S. R., & Stone, M. H. (2015). Dynamic Compression Enhances Pres-sure-to-Pain Threshold in Elite Athlete Recovery: Exploratory Study. Journal of strength and conditioning research, 29(5), 1263–1272. https://doi.org/10.1519/JSC.0000000000000412.

Sands, W. A., Murray, M. B., Murray, S. R., McNeal, J. R., Mizuguchi, S., Sato, K., & Stone, M. H. (2014). Per-istaltic pulse dynamic compression of the lower extremity enhances flexibility. Journal of strength and conditioning research, 28(4), 1058–1064. https://doi.org/10.1519/JSC.0000000000000244.

Sullivan, G. M., & Feinn, R. (2012). Using Effect Size-or Why the P Value Is Not Enough. Journal of graduate medical education, 4(3), 279–282. https://doi.org/10.4300/JGME-D-12-00156.1.

Tan, X., Qi, W. N., Gu, X., Urbaniak, J. R., & Chen, L. E. (2006). Intermittent pneumatic compression regu-lates expression of nitric oxide synthases in skeletal muscles. Journal of biomechanics, 39(13), 2430–2437. https://doi.org/10.1016/j.jbiomech.2005.07.022.

Theofilidis, G., Bogdanis, G. C., Koutedakis, Y., & Karatzaferi, C. (2018). Monitoring Exercise-Induced Muscle Fatigue and Adaptations: Making Sense of Popular or Emerging Indices and Biomarkers. Sports (Basel, Switzerland), 6(4), 153. https://doi.org/10.3390/sports6040153.

Thomas, K., Brownstein, C. G., Dent, J., Parker, P., Goodall, S., & Howatson, G. (2018). Neuromuscular fatigue and recovery after heavy resistance, jump, and sprint training. Medicine and Science in Sports and Exercise, 50(12), 2526–2535. https://doi.org/10.1249/MSS.0000000000001733.

Vermeulen, S., De Bleecker, C., De Blaiser, C., Kilinç, Ö. O., Willems, T., Vanrenterghem, J., Roosen, P., & De Ridder, R. (2023). The Effect of Fatigue on Trunk and Pelvic Jump-Landing Biomechanics in View of Lower Extremity Loading: A Systematic Review. Journal of Human Kinetics, 86, 73–95. https://doi.org/10.5114/jhk/159460.

Waller, T., Caine, M., Morris, R. (2006). Intermittent Pneumatic Compression Technology for Sports Recovery. In: Moritz, E.F., Haake, S. (eds) The Engineering of Sport 6. Springer, New York, NY. https://doi.org/10.1007/978-0-387-45951-6_70.

Welis, W., Darni, & Mario, D. T. (2023). Sports Massage: How does it Affect Reducing Lactic Acid Levels in Athletes? International Journal of Human Movement and Sports Sciences, 11(1), 20–26. https://doi.org/10.13189/saj.2023.110103.

Winke, M., & Williamson, S. (2018). Comparison of a Pneumatic Compression Device to a Compression Garment During Recovery from DOMS. International journal of exercise science, 11(3), 375–383. https://doi.org/10.70252/YXDX1767.

Wiriawan, O., Rusdiawan, A., Ardy Kusuma, D., Firmansyah, A., Vicente García-Jiménez, J., Ikhwan Zein, M., Pavlovic, R., Magdalena Nowak, A., Susanto, N., & Pranoto, A. (2024). Unilateral Hamstring Muscle Strengthening Exercises Can Improve Hamstring Asymmetry and Increase Jumping Performance in Sub-Elite Badminton Athletes Los ejercicios unilaterales de fortalecimiento de los músculos isquiotibiales pueden mejorar la asimetría de los isquiotibiales y aumentar el ren-dimiento de salto en atletas de bádminton de sub-élite. Retos, 54, 761–770. https://doi.org/https://doi.org/10.47197/retos.v54.103783.

Wong, T. L., Huang, C. F., & Chen, P. C. (2020). Effects of Lower Extremity Muscle Fatigue on Knee Loading during a Forward Drop Jump to a Vertical Jump in Female Athletes. Journal of Human Kinetics, 72(1), 5–13. https://doi.org/10.2478/hukin-2019-0122.

Yanaoka, T., Numata, U., Nagano, K., Kurosaka, S., & Kawashima, H. (2022). Effects of different inter-mittent pneumatic compression stimuli on ankle dorsiflexion range of motion. Frontiers in physiology, 13, 1054806. https://doi.org/10.3389/fphys.2022.1054806.

Zuj, K. A., Prince, C. N., Hughson, R. L., & Peterson, S. D. (2018). Enhanced muscle blood flow with in-termittent pneumatic compression of the lower leg during plantar flexion exercise and recov-ery. Journal of applied physiology (Bethesda, Md. : 1985), 124(2), 302–311. https://doi.org/10.1152/japplphysiol.00784.2017.

Descargas

Publicado

2025-04-01

Cómo citar

Rahmat, A. A., Sari, G. M., Qorib, M. F., Isna, N. M., Silviyanti, O. D., García-Jiménez, J. V., & Firmansyah, A. (2025). La compresión neumática intermitente de alta presión aplicada inmediatamente después del ejercicio físico reduce eficazmente la fatiga y mejora el rendimiento: un estudio preliminar. Retos, 66, 950–960. https://doi.org/10.47197/retos.v66.113503

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a

1 2 3 > >>