Tecnologías Innovadoras en la Educación Física y su Impacto en el Desarrollo de las Habilidades Motoras de los Estudiantes: Revisión Sistemática de la Literatura
DOI:
https://doi.org/10.47197/retos.v67.113225Palabras clave:
Aprendizaje mejorado por tecnología, desarrollo de habilidades motoras, educación física, realidad aumentada, realidad virtualResumen
Introducción: las tecnologías innovadoras en la educación física han cobrado relevancia en la mejora del desarrollo de las habilidades motoras, ofreciendo experiencias de aprendizaje inmersivas e interactivas. estas tecnologías, como la realidad virtual (RV), la realidad aumentada (RA) y los dispositivos portátiles, apoyan la adquisición de habilidades proporcionando retroalimentación en tiempo real y práctica personalizada.
Objetivo: el objetivo de esta revisión sistemática fue examinar el impacto de las herramientas de aprendizaje mejorado por tecnología en el desarrollo de habilidades motoras, identificar tendencias y desafíos en su implementación y ofrecer recomendaciones basadas en evidencia.
Metodología: la revisión analizó 54 estudios revisados por pares publicados entre 2020 y 2025. se siguió un enfoque sistemático con criterios de inclusión y exclusión para asegurar la selección de estudios relevantes. la síntesis de los datos se centró en los tipos de tecnologías utilizadas, los contextos educativos y los resultados relacionados con las habilidades motoras.
Resultados: los hallazgos mostraron que la RV y la RA mejoraron significativamente la conciencia espacial y la coordinación, mientras que los dispositivos portátiles fomentaron la autorregulación y el establecimiento de objetivos. sin embargo, se informaron desafíos como altos costos, interrupciones tecnológicas y una formación docente limitada.
Discusión: estos resultados coinciden con investigaciones previas que demuestran la eficacia de las herramientas de aprendizaje mejorado por tecnología, pero también destacan brechas, especialmente en investigaciones longitudinales y en la inclusión de poblaciones estudiantiles diversas.
Conclusiones: las herramientas de aprendizaje mejorado por tecnología pueden mejorar sustancialmente el desarrollo de habilidades motoras en la educación física cuando se integran de manera reflexiva y se complementan con la instrucción tradicional, respaldadas por recursos accesibles y programas de capacitación docente.
Citas
Afyouni, I., Murad, A., & Einea, A. (2020). Adaptive rehabilitation bots in serious games. Sensors, 20(24), 7037. https://doi.org/10.3390/s20247037
Alam, A., & Mohanty, A. (2023). Educational technology: Exploring the convergence of technology and pedagogy through mobility, interactivity, AI, and learning tools. Cogent Engineering, 10(2), 2283282. https://doi.org/10.1080/23311916.2023.2283282
AlGerafi, M. A., Zhou, Y., Oubibi, M., & Wijaya, T. T. (2023). Unlocking the potential: A comprehensive evaluation of augmented reality and virtual reality in education. Electronics, 12(18), 3953. https://doi.org/10.3390/electronics12183953
AlKasasbeh, W. J., & Amawi, A. T. (2024). Elevating Physical Education Teacher Through Technology Integration. International Journal of Interactive Mobile Technologies, 18(2). https://doi.org/10.3991/ijim.v18i02.43669
Arif, Y. M., Nugroho, F., Aini, Q., Fauzan, A. C., & Garcia, M. B. (2025). A Systematic Literature Review of Serious Games for Physical Education: Technologies, Implementations, and Evaluations. Global Innovations in Physical Education and Health, 1-36. https://doi.org/ 10.4018/979-8-3693-3952-7.ch001
Ayebi-Arthur, K., Barfi, K. A., Arkorful, V., Ocran, T., & Baffour, N. O. (2024). Leveraging computer technologies and instructional approaches to facilitate learning. Education and Information Technologies, 29(4), 4401-4416. https://doi.org/10.1007/s10639-023-11963-7
Blain, D. O., Standage, M., & Curran, T. (2022). Physical education in a post-COVID world: A blended-gamified approach. European Physical Education Review, 28(3), 757-776. https://doi.org/10.1177/1356336X221080372
Bremer, E., Graham, J. D., & Cairney, J. (2020). Outcomes and feasibility of a 12-week physical literacy intervention for children in an afterschool program. International journal of environmental research and public health, 17(9), 3129. https://doi.org/10.1080/23311886.2020.1724065
Brian, A., Getchell, N., True, L., De Meester, A., & Stodden, D. F. (2020). Reconceptualizing and operationalizing Seefeldt’s proficiency barrier: Applications and future directions. Sports Medicine, 50(11), 1889-1900. https://doi.org/10.1007/s40279-020-01332-6
Cesari, V., Galgani, B., Gemignani, A., & Menicucci, D. (2021). Enhancing qualities of consciousness during online learning via multisensory interactions. Behavioral Sciences, 11(5), 57. https://doi.org/10.3390/bs11050057
Chao, Z., Yi, L., Min, L., & Long, Y. Y. (2024). IoT-Enabled Prediction Model for Health Monitoring of College Students in Sports Using Big Data Analytics and Convolutional Neural Network. Mobile Networks and Applications, 1-18. https://doi.org/10.1007/s11036-024-02370-4
Clark, K., Tyree, S., Dawkins, J., & Hale, J. (2004, June). Qualitative and quantitative analytical techniques for network security assessment. In Proceedings from the Fifth Annual IEEE SMC Information Assurance Workshop, 2004. (pp. 321-328). IEEE. https://doi.org/10.1109/IAW.2004.1437834
Cui, Z., Song, Y., & Du, X. (2024). Multilevel modeling of technology use, student engagement, and fitness outcomes in physical education classes. Frontiers in Psychology, 15, 1458899. https://doi.org/10.3389/fpsyg.2024.1458899
Deng, Y., Wang, Z., Dong, L., Lei, Y., & Dong, Y. (2023). Immersive innovations: an examination of the efficacy and evolution of virtual reality in human movement training. Robotic Intelligence and Automation, 43(5), 551-566. https://doi.org/10.1108/RIA-05-2023-0072
Dubey, P. (2023). Examining How Interactive Simulations Can Revolutionise Teaching and Referencing Methods. Journal of Advanced Research in Library and Information Science, 10(4), 17-24. https://doi.org/10.1108/S1479-367920240000048012
Fazio, A., & Isidori, E. (2021). Technology-enhanced learning and CLIL For physical education. eLearning & Software for Education, 3. https://doi.org/10.12753/2066-026X-21-144
Ferraz, R., Ribeiro, D., Alves, A. R., Teixeira, J. E., Forte, P., & Branquinho, L. (2024). Using gamification in teaching physical education: a survey review. Montenegrin Journal of Sports Science and Medicine, 13(1), 31-44. https://doi.org/10.26773/mjssm.240304
Fitts PM, Posner MI. Human performance. Belmont, CA: Brooks/Cole; 1967
Fu, D., Chen, L., & Cheng, Z. (2021). Integration of wearable smart devices and internet of things technology into public physical education. Mobile Information Systems, 2021(1), 6740987. https://doi.org/10.1155/2021/6740987
Fuentes-Nieto, T., López Pastor, V. M., & Palacios-Picos, A. (2022). A combination of transformative and authentic assessment through ICT in Physical Education (Combinando una evaluación auténtica y transformativa a través de las TIC en Educación Física). Retos, 44, 728–738. https://doi.org/10.47197/retos.v44i0.91459
García-Sampedro, M., Agudo Prado, S., & Torralba-Burrial, A. (2024). Pre-service teachers’ skills development through educational video generation. European Journal of Teacher Education, 1-19. https://doi.org/10.1080/02619768.2024.2323925
Geisen, M., Fox, A., & Klatt, S. (2023). VR as an innovative learning tool in sports education. Applied Sciences, 13(4), 2239. https://doi.org/10.3390/app13042239
Gumbheer, C. P., Khedo, K. K., & Bungaleea, A. (2022). Personalized and adaptive context-aware mobile learning: review, challenges and future directions. Education and Information Technologies, 27(6), 7491-7517. https://doi.org/10.1007/s10639-022-10942-8
He, J., & Yu, Z. (2023, August). Design of Blended Teaching Platform for Aerobics Courses Based on Wearable Virtual VR. In 2023 IEEE 6th International Conference on Knowledge Innovation and Invention (ICKII) (pp. 364-366). IEEE. https://doi.org/10.1109/ICKII58656.2023.10332569
Hsia, L. H., Lin, Y. N., Lin, C. H., & Hwang, G. J. (2025). Effectiveness of gamified intelligent tutoring in physical education through the lens of self-determination theory. Computers & Education, 227, 105212. https://doi.org/10.1016/j.compedu.2024.105212
Huang, M., & Yongquan, T. (2025). Tech‐driven excellence: A quantitative analysis of cutting‐edge technology impact on professional sports training. Journal of Computer Assisted Learning, 41(1), e13082. https://doi.org/10.1111/jcal.13082
Iqbal, M. Z., Mangina, E., & Campbell, A. G. (2022). Current challenges and future research directions in augmented reality for education. Multimodal Technologies and Interaction, 6(9), 75. https://doi.org/10.3390/mti6090075
Ju, F., Wang, Y., Yin, B., Zhao, M., Zhang, Y., Gong, Y., & Jiao, C. (2023). Microfluidic wearable devices for sports applications. Micromachines, 14(9), 1792. https://doi.org/10.3390/mi14091792
Klochko, O. V., & Fedorets, V. M. (2022). Using immersive reality technologies to increase a physical education teacher's health-preserving competency. Educational Technology Quarterly, 2022(4), 276-306. https://orcid.org/0000-0001-9936-3458
Kosmas, P., & Zaphiris, P. (2023). Improving students’ learning performance through Technology-Enhanced Embodied Learning: A four-year investigation in classrooms. Education and Information Technologies, 28(9), 11051-11074. https://doi.org/10.1007/s10639-022-11466-x
Kourtesis, P. (2024). A Comprehensive Review of Multimodal XR Applications, Risks, and Ethical Challenges in the Metaverse. Multimodal Technologies and Interaction, 8(11), 98. https://doi.org/10.3390/mti8110098
Lalotra, G. S., & Kumar, V. (2024). The Impact of Virtual Reality and Augmented Reality in Inclusive Education. In Applied Assistive Technologies and Informatics for Students with Disabilities (pp. 71-94). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-0914-4_5
Lee, H. S., & Lee, J. (2021). Applying artificial intelligence in physical education and future perspectives. Sustainability, 13(1), 351. https://doi.org/10.3390/su13010351
Li, G., & Liu, J. (2024). Improving physical education through innovative multimedia learning platform and data-driven instruction. Soft Computing, 28(2), 1567-1584. https://doi.org/10.1007/s00500-023-09436-7
Li, X., Fan, D., Deng, Y., Lei, Y., & Omalley, O. (2024). Sensor fusion-based virtual reality for enhanced physical training. Robotic Intelligence and Automation, 44(1), 48-67. https://doi.org/10.1108/RIA-08-2023-0103
Liang, L., Zhang, Z., & Guo, J. (2023). The Effectiveness of Augmented Reality in Physical Sustainable Education on Learning Behaviour and Motivation. Sustainability, 15(6), 5062. https://doi.org/10.3390/su15065062
Liu, C., & Xie, Y. (2024). Innovative Application of Computer Vision and Motion Tracking Technology in Sports Training. EAI Endorsed Transactions on Pervasive Health and Technology, 10. https://doi.org/10.4108/eetpht.10.5763
Liu, W., Wang, S., Mei, D., & Wang, Y. (2025). Wearable Gait Detection Device by Perception of Proximity and Pressure at the Knee. IEEE/ASME Transactions on Mechatronics. https://doi.org/10.1109/TMECH.2024.3521406
Liu, Y., Sathishkumar, V. E., & Manickam, A. (2022). Augmented reality technology based on school physical education training. Computers and Electrical Engineering, 99, 107807. https://doi.org/10.1016/j.compeleceng.2022.107807
Liu, Y., Sathishkumar, V. E., & Manickam, A. (2022). Augmented reality technology based on school physical education training. Computers and Electrical Engineering, 99, 107807. https://doi.org/10.1016/j.compeleceng.2022.107807
López-Fernández, I., Gil-Espinosa, F. J., Burgueño, R., & Calderón, A. (2024). Physical education teachers’ reality and experience from teaching during a pandemic. Sport, Education and Society, 29(9), 1085-1098. https://doi.org/10.1080/13573322.2023.2254795
Magill, R. A., and Anderson, D. I. (2017). Motor Learning and Control: Concepts and Applications, 11th Edn. New York, NY: McGraw-Hill Education.
McMahon, D. D., McMahon, A. K., Anglin, M., Abrams, K., Wilds, K., & Aumel, A. (2023). Digital health, fitness, and wellness tools for students with disabilities. Journal of Special Education Technology, 38(3), 392-403. https://doi.org/10.1177/0162643422109
Mitra, U., & Rehman, S. U. (2025). Significance of AI/ML Wearable Technologies for Education and Teaching. In Wearable Devices and Smart Technology for Educational Teaching Assistance (pp. 1-26). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7817-5.ch001
Mokmin, N. A. M., & Rassy, R. P. (2024). Review of the trends in the use of augmented reality technology for students with disabilities when learning physical education. Education and Information Technologies, 29(2), 1251-1277. https://doi.org/10.1007/s10639-022-11550-2
Montiel-Ruiz, F. J., Sánchez-Vera, M. D. M., & Solano-Fernández, I. M. (2023). Social networks and gamification in physical education: A case study. Contemporary Educational Technology, 15(1). https://eric.ed.gov/?id=EJ1377187
Mulato, N., Hidayatulloh, F., Purnama, S. K., & Syaifullah, R. (2024). Optimization of Learning Physical Education In Digital Era: A Systematic Review. Retos, 54, 844–849. https://doi.org/10.47197/retos.v54.105211
Omarov, N., Omarov, B., Azhibekova, Z., & Omarov, B. (2024). Applying an augmented reality game-based learning environment in physical education classes to enhance sports motivation. Retos, 60, 269–278. https://doi.org/10.47197/retos.v60.109170
Omarov, B., Omarov, B., Rakhymzhanov, A., Niyazov, A., Sultan, D., & Baikuvekov, M. (2024). Development of an artificial intelligence-enabled non-invasive digital stethoscope for monitoring the heart condition of athletes in real-time. Retos, 60, 1169–1180. https://doi.org/10.47197/retos.v60.108633
Pan, Y. (2024). Sports game teaching and high precision sports training system based on virtual reality technology. Entertainment Computing, 50, 100662. https://doi.org/10.1016/j.entcom.2024.100662
Putra, C. A., Permadi, A. S., & Setiawan, M. A. (2024). Information technology innovation in sports learning: understanding global trends and challenges. Retos, 58, 844–854. https://doi.org/10.47197/retos.v58.106485
Qu, J., Zhang, Y., Tang, W., Cheng, W., Zhang, Y., & Bu, L. (2023). Developing a virtual reality healthcare product based on data-driven concepts: A case study. Advanced Engineering Informatics, 57, 102118. https://doi.org/10.1016/j.aei.2023.102118
Ricciardi, C., Manfra, L., Hartman, S., Bleiker, C., Dineheart, L., & Winsler, A. (2021). School readiness skills at age four predict academic achievement through 5th grade. Early Childhood Research Quarterly, 57, 110-120. https://doi.org/10.1016/j.ecresq.2021.05.006
Rudd, J., Renshaw, I., Savelsbergh, G., Chow, J. Y., Roberts, W. M., Newcombe, D., & Davids, K. (2021). Nonlinear pedagogy and the athletics skills model. London: Routledge.
Rius, J. B., Pérez González, M., Arderiu Antonell, M., & Rillo-Albert, A. (2023). Teacher training in physical education: creation of a repository of didactic units. Retos, 49, 414–426. https://doi.org/10.47197/retos.v49.98114
Salehi, S. K., Tahmasebi, F., & Talebrokni, F. S. (2021). A different look at featured motor learning models: comparison exam of Gallahue’s, Fitts and Posner’s and Ann Gentile’s motor learning models. Movement & Sport Sciences, (2), 53-63. https://doi.org/10.1051/sm/2021012
Samsonovich, A. V., Kitsantas, A., Wahidi, S., & Dolgikh, A. A. (2024). Self-Regulated Learning (SRL) with AI in Problem-Based Learning. In Biologically Inspired Cognitive Architectures Meeting (pp. 345-357). Springer, Cham. https://doi.org/10.1007/978-3-031-76516-2_34
Segear, S., Chheang, V., Baron, L., Li, J., Kim, K., & Barmaki, R. L. (2024). Visual feedback and guided balance training in an immersive virtual reality environment for lower extremity rehabilitation. Computers & Graphics, 119, 103880. https://doi.org/10.1016/j.cag.2024.01.007
Smith, I., Scheme, E., & Bateman, S. (2024). Designing a Technique-Oriented Sport Training Game for Motivating a Change in Running Technique. Proceedings of the ACM on Human-Computer Interaction, 8(CHI PLAY), 1-29. https://doi.org/10.1145/3677064
Song, X. (2024). Physical education teaching mode assisted by artificial intelligence assistant under the guidance of high-order complex network. Scientific reports, 14(1), 4104. https://doi.org/10.1038/s41598-024-53964-7
Sotos-Martínez, V. J., Ferriz-Valero, A., García-Martínez, S., & Tortosa-Martínez, J. (2024). The effects of gamification on the motivation and basic psychological needs of secondary school physical education students. Physical Education and Sport Pedagogy, 29(2), 160-176. https://doi.org/10.1080/17408989.2022.2039611
Tandon, U., & Ertz, M. (2024). Modelling gamification, virtual-try-on technology, e-logistics service quality as predictors of online shopping: an empirical investigation. Current Psychology, 43(16), 14289-14303. https://doi.org/10.1007/s12144-023-05379-2
Thelen, E. (2005). Dynamic systems theory and the complexity of change. Psychoanalytic dialogues, 15(2), 255-283. https://doi.org/10.1080/10481881509348831
Torres, A. C., Duarte, M., Pinto, D., & Mouraz, A. (2024). Self-regulated learning in secondary school: Students’ self-feedback in a peer observation programme. Studies in Educational Evaluation, 83, 101407. https://doi.org/10.1016/j.stueduc.2024.101407
van Sluijs, E. M., Ekelund, U., Crochemore-Silva, I., Guthold, R., Ha, A., Lubans, D., ... & Katzmarzyk, P. T. (2021). Physical activity behaviours in adolescence: current evidence and opportunities for intervention. The Lancet, 398(10298), 429-442. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)01259-9/abstract
Wang, J., Yang, Y., Liu, H., & Jiang, L. (2024). Enhancing the college and university physical education teaching and learning experience using virtual reality and particle swarm optimization. Soft Computing, 28(2), 1277-1294. https://doi.org/10.1007/s00500-023-09528-4
Warner, M., Robinson, J., Heal, B., Lloyd, J., Mandigo, J., Lennox, B., & Davenport Huyer, L. (2021). Increasing physical literacy in youth: A two-week Sport for Development program for children aged 6-10. Prospects, 50(1), 165-182. https://doi.org/10.1007/s11125-020-09519-5
Wolf, M., Teizer, J., Wolf, B., Bükrü, S., & Solberg, A. (2022). Investigating hazard recognition in augmented virtuality for personalized feedback in construction safety education and training. Advanced Engineering Informatics, 51, 101469. https://doi.org/10.1016/j.aei.2021.101469
Xie, M. (2021). Design of a physical education training system based on an intelligent vision. Computer Applications in Engineering Education, 29(3), 590-602. https://doi.org/10.1002/cae.22259
Xu, X., Kang, J., & Yan, L. (2022). Understanding embodied immersion in technology‐enabled embodied learning environments. Journal of Computer Assisted Learning, 38(1), 103-119. https://doi.org/10.1111/jcal.12594
Yuvaraja, H. K., Koszalka, T. A., & Huang, X. (2024). Design of XR Technology to Prompt Deeper Psychomotor Skills Learning. In Proceedings of the 18th International Conference of the Learning Sciences-ICLS 2024, pp. 2185-2186. International Society of the Learning Sciences. https://doi.org/10.22318/icls2024.232733
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Nurlan Bolatuly Omarov, Zhaxybek Zhunusbekov, Iskandar Aliyev

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess