Estudio longitudinal de las zonas de carga y el rendimiento en el fútbol de élite: análisis multivariante y aprendizaje automático
DOI:
https://doi.org/10.47197/retos.v65.111326Palabras clave:
Fútbol, sistema de posicionamiento global (GPS), análisis del rendimiento, deporte de equipo, sistema de seguimiento portátilResumen
Introducción: Los avances tecnológicos recientes han revolucionado el monitoreo de los atletas, permitiendo que los clubes de fútbol de todo el mundo utilicen sensores integrados para rastrear el rendimiento de los jugadores. Sin embargo, la interpretación de los vastos y complejos datos generados por estos sensores sigue siendo un desafío para entrenadores y analistas.
Objetivo: Este estudio tiene como objetivo identificar las cargas de partido más significativas que influyen en el rendimiento de los jugadores.
Metodología: Se recopilaron datos del Terengganu Football Club (TFC) durante la temporada 2022 de la Superliga de Malasia. Se empleó el algoritmo de agrupamiento Louvain para clasificar los niveles de rendimiento de los jugadores, mientras que la regresión logística (modelo logit) identificó las zonas de carga clave asociadas con diferentes niveles de rendimiento. La prueba de Kruskal-Wallis se utilizó para validar las diferencias entre estos grupos.
Resultados: Los datos recopilados permitieron identificar tres grupos de rendimiento: moderado (10 partidos), alto (7 partidos) y bajo (5 partidos). De las 20 zonas de carga analizadas, 15 fueron significativas, logrando una precisión inicial de clasificación del 72,7%. Tras aplicar la prueba de Kruskal-Wallis, se aislaron siete métricas de carga clave, mejorando la precisión de clasificación al 86,4%.
Discusión: Los hallazgos proporcionan información sobre métricas clave relacionadas con la carga, ayudando a los entrenadores a comprender su impacto en el rendimiento de los jugadores. Estos conocimientos pueden orientar la gestión de la carga de trabajo y los ajustes en el entrenamiento para mejorar la eficiencia de los jugadores y reducir el riesgo de lesiones.
Conclusiones: Este estudio ofrece una guía valiosa para la optimización de los programas de entrenamiento y el desarrollo de estrategias más efectivas para mejorar el rendimiento de los equipos en el fútbol moderno.
Citas
Abdullah, M. R., Musa, R. M., Kosni, N. A., Maliki, A. B. H. M., & Haque, M. (2016). Profiling and distinction of specific skills related performance and fitness level between senior and junior Malaysian youth soccer players. International Journal of Pharmaceutical Research, 8(3), 64–71. http://www.scopus.com/inward/record.url?eid=2-s2.0-85026733512&partnerID=MN8TOARS
Akubat, I., Barrett, S., Sagarra, M. L., & Abt, G. (2018). The Validity of External:Internal Training Load Ratios in Rested and Fatigued Soccer Players. Sports, 6(2), 44. https://doi.org/10.3390/sports6020044
Ammann, L., Ruf, L., Beavan, A., Chmura, P., & Altmann, S. (2023). Advancing and critical appraisal of an integrative load monitoring approach in microcycles in professional soccer. PLOS ONE, 18(9), e0286372. https://doi.org/10.1371/journal.pone.0286372
Beygmohammadloo, V., Gharakhani, D., & Naderinasab, M. (2024). Development of Football Tactics and Strategies Driven by Artificial Intelligence. AI and Tech in Behavioral and Social Sciences, 2(2), 1–6. https://doi.org/10.61838/kman.aitech.2.2.1
Bhavani, A., & Ponnusamy, V. (2024). Genetic Algorithm and the Kruskal–Wallis H-Test-Based Trainer Selection Federated Learning for IoT Security. IEEE Access, 12, 120474–120481. https://doi.org/10.1109/ACCESS.2024.3450836
Brandão, L., Moura, F., Bedo, B. L. S., Aquino, R., de Andrade, A. G., & Moreira Praça, G. (2024). Quantify-ing within-matches tactical behaviors using position data and notational analysis in soccer. Ki-nesiology, 56(1), 53–60. https://doi.org/10.26582/k.56.1.6
Browne, P. R., Sweeting, A. J., & Robertson, S. (2022). Modelling the Influence of Task Constraints on Goal Kicking Performance in Australian Rules Football. Sports Medicine - Open, 8(1). https://doi.org/10.1186/s40798-021-00393-9
Castillo-Rodríguez, A., González-Téllez, J. L., Figueiredo, A., Chinchilla-Minguet, J. L., & Onetti-Onetti, W. (2023). Starters and non-starters soccer players in competition: is physical performance in-creased by the substitutions? BMC Sports Science, Medicine and Rehabilitation, 15(1). https://doi.org/10.1186/s13102-023-00641-3
Costa, J. A., Rago, V., Brito, P., Figueiredo, P., Sousa, A., Abade, E., & Brito, J. (2022). Training in women soccer players: A systematic review on training load monitoring. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.943857
Fávero, L. P., Belfiore, P., & de Freitas Souza, R. (2023). Chapter 15 - Binary and multinomial logistic regression models. In L. P. Fávero, P. Belfiore, & R. de Freitas Souza (Eds.), Data Science, Ana-lytics and Machine Learning with R (pp. 259–283). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-824271-1.00008-1
Forcher, L., Forcher, L., Altmann, S., Jekauc, D., & Kempe, M. (2022). The keys of pressing to gain the ball – Characteristics of defensive pressure in elite soccer using tracking data. Science and Med-icine in Football, 0(0), 1–9. https://doi.org/10.1080/24733938.2022.2158213
Gu, C., Na, J., Pei, Y., & De Silva, V. (2024). Player Pressure Map -- A Novel Representation of Pressure in Soccer for Evaluating Player Performance in Different Game Contexts.
Helwig, J., Diels, J., Röll, M., Mahler, H., Gollhofer, A., Roecker, K., & Willwacher, S. (2023). Relationships between External, Wearable Sensor-Based, and Internal Parameters: A Systematic Review. Sensors, 23(2), 827. https://doi.org/10.3390/s23020827
Hernandez-Martin, A., Sanchez-Sanchez, J., Felipe, J. L., Manzano-Carrasco, S., Majano, C., Gallardo, L., & Garcia-Unanue, J. (2020). Physical demands of u10 players in a 7-a-side soccer tournament de-pending on the playing position and level of opponents in consecutive matches using global po-sitioning systems (Gps). Sensors (Switzerland), 20(23), 1–11. https://doi.org/10.3390/s20236968
Kaminski, M. M. (2022). How Strong Are Soccer Teams? The “Host Paradox” and Other Counterintui-tive Properties of FIFA’s Former Ranking System. MDPI, 13(2). https://doi.org/10.3390/g13020022
Kang, T., Hahm, J., & Matsuoka, H. (2022). Effect of 2002 FIFA World Cup: Point of Attachment That Promotes Mass Football Participation. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.857323
Kelly, D. M. (2021). Quantification of Seasonal Training-Load In Elite English Premier League Soccer Players. Liverpool John Moores University (United Kingdom).
Lasek, J., & Gagolewski, M. (2021). Interpretable sports team rating models based on the gradient de-scent algorithm. International Journal of Forecasting, 37(3), 1061–1071. https://doi.org/10.1016/j.ijforecast.2020.11.008
Lechner, S., Ammar, A., Boukhris, O., Trabelsi, K., M Glenn, J., Schwarz, J., Hammouda, O., Zmijewski, P., Chtourou, H., Driss, T., & Hoekelmann, A. (2023a). Monitoring training load in youth soccer players: effects of a six-week preparatory training program and the associations between ex-ternal and internal loads. Biology of Sport, 40(1), 63–75. https://doi.org/10.5114/biolsport.2023.112094
Lechner, S., Ammar, A., Boukhris, O., Trabelsi, K., M Glenn, J., Schwarz, J., Hammouda, O., Zmijewski, P., Chtourou, H., Driss, T., & Hoekelmann, A. (2023b). Monitoring training load in youth soccer players: effects of a six-week preparatory training program and the associations between ex-ternal and internal loads. Biology of Sport, 40(1), 63–75. https://doi.org/10.5114/biolsport.2023.112094
Lechner, S., Ammar, A., Boukhris, O., Trabelsi, K., M Glenn, J., Schwarz, J., Hammouda, O., Zmijewski, P., Chtourou, H., Driss, T., & Hoekelmann, A. (2023c). Monitoring training load in youth soccer players: effects of a six-week preparatory training program and the associations between ex-ternal and internal loads. Biology of Sport, 40(1), 63–75. https://doi.org/10.5114/biolsport.2023.112094
Li, H., Wang, C., & Huang, Q. (2024). Employing Iterative Feature Selection in Fuzzy Rule-Based Binary Classification. IEEE Transactions on Fuzzy Systems, 32(9), 5109–5121. https://doi.org/10.1109/TFUZZ.2024.3414836
Li, L., & Liu, Z.-P. (2022). A connected network-regularized logistic regression model for feature selec-tion. Applied Intelligence, 11672–11702. https://doi.org/10.1007/s10489-021-02877-3
Maher, O. (2022). Physical Match Demands in Youth Football: Informing Recruitment Strategies and Pathways to Elite Professional Football for Home-Grown Academy Youth Football Players [Liverpool John Moores University (United Kingdom)]. https://doi.org/10.24277/LJMU.t.00017190
Mamytko, A. V., & Hadyko, O. O. (2024). Technical and tactical training as the main factor in the for-mation of sportsmanship of football players of different ages. Scientific Journal of National Pedagogical Dragomanov University Series 15 Scientific and Pedagogical Problems of Physical Culture (Physical Culture and Sports), 7(180), 103–106. https://doi.org/10.31392/UDU-nc.series15.2024.7(180).21
Martín-García, A., Castellano, J., Méndez Villanueva, A., Gómez-Díaz, A., Cos, F., & Casamichana, D. (2022). Physical Demands of Ball Possession Games in Relation to the Most Demanding Pas-sages of a Competitive Match. Journal of Sports Science & Medicine, 19(1), 1–9. http://www.jssm.org
Modric, T., Jelicic, M., & Sekulic, D. (2021). Relative training load and match outcome: Are professional soccer players actually undertrained during the in-season? Sports, 9(10). https://doi.org/10.3390/sports9100139
Musa, R. M., Abdul Majeed, A. P. P., Abdullah, M. R., Kuan, G., & Mohd Razman, M. A. (2022). Data Mining and Machine Learning in High-Performance Sport: Performance Analysis of On-field and Video Assistant Referees in European Soccer Leagues. SpringerBriefs in Applied Science and Tech-nology. https://doi.org/10.1007/978-981-19-7049-8
Nikić, A., Topalović, A., & Bach, M. P. (2024). From Data to Decision: Machine Learning in Football Team Management. 2024 47th MIPRO ICT and Electronics Convention (MIPRO), 1059–1064. https://doi.org/10.1109/MIPRO60963.2024.10569835
Oladele, O. S. (2022). The Effect of A Congested Season On The Match Activity Of Professional Football Players.
Padrón-Cabo, A., Solleiro-Duran, D., Lorenzo-Martínez, M., Nakamura, F. Y., Campos-Vázquez, M., & Rey, E. (2024). Application of arbitrary and individualized load quantification strategies over the weekly microcycle in professional soccer players. Biology of Sport, 41(1), 153–161. https://doi.org/10.5114/biolsport.2024.129481
Pinheiro, G. de S., Chiari Quintão, R., Nascimento, V. B., Claudino, J. G., Alves, A. L., Teoldo da Costa, I., & Teoldo da Costa, V. (2023). Small-sided games do not replicate all external and internal loads of a football match-play during pre-season: A case study. International Journal of Sports Science & Coaching, 18(1), 152–159. https://doi.org/10.1177/17479541211069935
Plakias, S., Tsatalas, T., Armatas, V., Tsaopoulos, D., & Giakas, G. (2024). Tactical Situations and Playing Styles as Key Performance Indicators in Soccer. Journal of Functional Morphology and Kinesi-ology, 9(2), 88. https://doi.org/10.3390/jfmk9020088
Póvoas, S., Krustrup, P., & Castagna, C. (2023). Validity and sensitivity of field tests’ heart-rate recovery assessment in recreational football players. PloS One, 18(3), e0282058. https://doi.org/10.1371/journal.pone.0282058
Prather, J., Zaragoza, J., Tinnin, M., Secrest, A., Goonan, J., Taylor, L., & Belton, H.-B. ; (2020). Positional Differences in Running Distance and Speed Among Collegiate Rugby 7s Players. International Journal of Exercise Science, 2(12). www.tacsm.org
Schroeder, C. W. (2021). MLB© Roster Construction Optimization Based on Positional Significance to Overall Team Performance [The College of St. Scholastica]. https://www.proquest.com/dissertations-theses/mlb-©-roster-construction-optimization-based-on/docview/2559668521/se-2?accountid=45905
Silva, H., Nakamura, F. Y., Castellano, J., & Marcelino, R. (2023). Training Load Within a Soccer Micro-cycle Week—A Systematic Review. Strength & Conditioning Journal, 45(5), 568–577. https://doi.org/10.1519/SSC.0000000000000765
Sports Performance Tracking | GPS Tracking for Contact Sports | SPT – SportsPerformanceTracking. (n.d.). Retrieved April 1, 2023, from https://sportsperformancetracking.com/
Stieler, E., de Mello, M. T., Lôbo, I. L. B., Gonçalves, D. A., Resende, R., Andrade, A. G., Lourenço, T. F., Sil-va, A. A. C., Andrade, H. A., Guerreiro, R., & Silva, A. (2023). Current Technologies and Practices to Assess External Training Load in Paralympic Sport: A Systematic Review. Journal of Sport Rehabilitation, 32(6), 635–644. https://doi.org/10.1123/jsr.2022-0110
Wang, S. H., Qin, Y., Jia, Y., & Igor, K. E. (2022). A systematic review about the performance indicators related to ball possession. In PLoS ONE (Vol. 17, Issue March). Public Library of Science. https://doi.org/10.1371/journal.pone.0265540
Wilke, J., Tenberg, S., & Groneberg, D. (2022). Prognostic factors of muscle injury in elite football play-ers: A media-based, retrospective 5-year analysis. Physical Therapy in Sport, 55, 305–308. https://doi.org/10.1016/j.ptsp.2022.05.009
Yang, J., Xiu, P., Sun, L., Ying, L., & Muthu, B. (2022). Social media data analytics for business decision making system to competitive analysis. Information Processing and Management, 59(1). https://doi.org/10.1016/j.ipm.2021.102751.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Aina Munirah Ab Rasid, Rabiu Muazu Musa, Anwar P. P. Abdul Majeed, Vijayamurugan Eswaramoorthi, Naresh Bhaskar Raj, Zulkifli Mohamed

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess