Avanzando en la seguridad del atleta mediante el monitoreo de ECG en tiempo real para mejorar la salud cardiovascular en el rendimiento deportivo
DOI:
https://doi.org/10.47197/retos.v61.110378Palabras clave:
rendimiento deportivo, monitoreo de ECG en tiempo real, alud cardiovascular del atleta, tecnología ponible, medicina deportiva, monitoreo fisiológico, optimización del entrenamientoResumen
Este documento de investigación explora la implementación y eficacia de los sistemas de monitoreo de electrocardiogramas (ECG) en tiempo real para atletas, enfatizando su potencial para mejorar significativamente la seguridad y el rendimiento en entornos deportivos. Mediante el uso de tecnología avanzada de ECG, el estudio investiga cómo el monitoreo continuo y en tiempo real de la frecuencia cardíaca y el ritmo puede ayudar en la detección inmediata de anomalías cardiovasculares durante actividades de alta intensidad. La metodología de la investigación incluye la implementación de dispositivos ECG portátiles en un entorno experimental controlado, analizando datos de atletas durante sesiones de entrenamiento y eventos competitivos. Los resultados del estudio destacan la capacidad del sistema para proporcionar evaluaciones cardíacas rápidas y precisas, permitiendo así intervenciones médicas oportunas. Además, el documento discute los desafíos técnicos asociados con el monitoreo de ECG en tiempo real, como la interferencia de señales y la precisión de los datos, y aborda consideraciones de privacidad y éticas relacionadas con la recolección continua de datos de salud. La discusión se extiende a las implicaciones de integrar dicha tecnología dentro de la medicina deportiva, sugiriendo que, mientras los sistemas ofrecen beneficios sustanciales en el monitoreo y prevención de problemas cardíacos, también requieren estándares rigurosos para la seguridad de los datos y la supervisión ética. La conclusión aboga por un enfoque equilibrado para la adopción de estas tecnologías, proponiendo direcciones futuras de investigación que se centren en mejorar la fiabilidad del sistema e integrar inteligencia artificial para predecir riesgos de salud de manera proactiva. Este estudio contribuye al discurso continuo en tecnología de salud deportiva proporcionando un análisis comprensivo del monitoreo de ECG en tiempo real como una herramienta transformadora para la gestión del cuidado de la salud de los atletas.
Citas
Smaranda, A. M., Drăgoiu, T. S., Caramoci, A., Afetelor, A. A., Ionescu, A. M., & Bădărău, I. A. (2024). Artificial Intelligence in Sports Medicine: Reshaping Electrocardiogram Analysis for Athlete Safety—A Narrative Review. Sports, 12(6), 144.
Gajda, R., Gajda, J., Czuba, M., Knechtle, B., & Drygas, W. (2024). Sports heart monitors as reliable diagnostic tools for training control and detecting arrhythmias in professional and leisure-time endurance athletes: an expert consen-sus statement. Sports Medicine, 54(1), 1-21.
Yamane, T., Hirano, K., Hirai, K., Ousaka, D., Sakano, N., Morita, M., ... & Kasahara, S. (2022). Trial of sportswear type ECG sensor device for cardiac safety management during marathon running. Advanced Biomedical Engineering, 11, 151-161.
Qi, Y., Sajadi, S. M., Baghaei, S., Rezaei, R., & Li, W. (2024). Digital technologies in sports: Opportunities, challenges, and strategies for safeguarding athlete wellbeing and competitive integrity in the digital era. Technology in Society, 102496.
Omarov, B., Suliman, A., Tsoy, A. Parallel backpropagation neural network training for face recognition. Far East Jour-nal of Electronics and Communications. Volume 16, Issue 4, December 2016, Pages 801-808.
Enoiu, R. S., Găinariu, I., & Mîndrescu, V. (2023). Implementing Modern Technology for Vital Sign Monitoring to Enhance Athletic Training and Sports Performance. Sustainability, 15(3), 2520.
Castillo-Atoche, A., Caamal-Herrera, K., Atoche-Enseñat, R., Estrada-López, J. J., Vázquez-Castillo, J., Castillo-Atoche, A. C., ... & Espinoza-Ruiz, A. (2022). Energy efficient framework for a AIoT cardiac arrhythmia detection system wearable during sport. Applied Sciences, 12(5), 2716.
Omarov, B., Batyrbekov, A., Suliman, A., Omarov, B., Sabdenbekov, Y., & Aknazarov, S. (2020, November). Electron-ic stethoscope for detecting heart abnormalities in athletes. In 2020 21st International Arab Conference on Infor-mation Technology (ACIT) (pp. 1-5). IEEE.
Ran, S., Yang, X., Liu, M., Zhang, Y., Cheng, C., Zhu, H., & Yuan, Y. (2022). Homecare-oriented ECG diagnosis with large-scale deep neural network for continuous monitoring on embedded devices. IEEE Transactions on Instrumenta-tion and Measurement, 71, 1-13. DOI: https://doi.org/10.1109/TIM.2022.3147328
Ahmad, W. N. W., Adib, M. A. H. M., & Txi, M. R. S. (2022). Enhanced the anxiety monitoring system among athletes with IoT for sports performance: a review. Journal of Physical Education and Sport, 22(11), 2700-2707.
Tursynova, A., Omarov, B., Tukenova, N., Salgozha, I., Khaaval, O., Ramazanov, R., & Ospanov, B. (2023). Deep learning-enabled brain stroke classification on computed tomography images. Comput. Mater. Contin, 75(1), 1431-1446.
Altayeva, A., Omarov, B., & Im Cho, Y. (2018, January). Towards smart city platform intelligence: PI decoupling math model for temperature and humidity control. In 2018 IEEE International Conference on Big Data and Smart Compu-ting (BigComp) (pp. 693-696). IEEE.
Zhen, H., Kumar, P. M., & Samuel, R. D. J. (2021). Internet of things framework in athletics physical teaching system and health monitoring. International Journal on Artificial Intelligence Tools, 30(06n08), 2140016.
Ding, W. (2023). Role of sensors based on machine learning health monitoring in athletes' wearable heart rate monitor-ing. Human-centric Computing and Information Sciences, 13.
Palermi, S., Vecchiato, M., Saglietto, A., Niederseer, D., Oxborough, D., Ortega-Martorell, S., ... & D’Ascenzi, F. (2024). Unlocking the potential of artificial intelligence in sports cardiology: does it have a role in evaluating athlete’s heart?. European Journal of Preventive Cardiology, 31(4), 470-482.
Lv, M. (2024). Construction of Athletes' Physical Condition Monitoring and Analysis System Using Biometrics Recogni-tion Technology. Journal of Electrical Systems, 20(6s), 2082-2091.
Alvarez, C. ., Campos-Jara, C., Gomes Ciolac, E., Vega-Guimaraes, G., Andrade-Mayorga, O., Cano-Montoya, J., C. Andrade, D., Delgado-Floody, P., Alonso-Martínez, A., Izquierdo, M. ., & Cigarroa, I. (2023). Hypertensive pa-tients show higher heart rate response during incremental exercise and elevated arterial age estimation than normo-tensive adult peers: VASCU-HEALTH PROJECT. Retos, 50, 25–32. https://doi.org/10.47197/retos.v50.99716
Kim, K. R., Kang, T. W., Kim, H., Lee, Y. J., Lee, S. H., Yi, H., ... & Yeo, W. H. (2024). All‐in‐One, Wireless, Mul-ti‐Sensor Integrated Athlete Health Monitor for Real‐Time Continuous Detection of Dehydration and Physiological Stress. Advanced Science, 11(33), 2403238.
Gorski, M. A., Mimoto, S. M., Khare, V., Bhatkar, V., & Combs, A. H. (2021). Real-time digital biometric monitoring during elite athletic competition: System feasibility with a wearable medical-grade sensor. Digital Biomarkers, 5(1), 37-43.
Sun, W., Guo, Z., Yang, Z., Wu, Y., Lan, W., Liao, Y., ... & Liu, Y. (2022). A review of recent advances in vital signals monitoring of sports and health via flexible wearable sensors. Sensors, 22(20), 7784.
Schauss, G. (2022). Wearable Textile Electrocardiogram Sport Bra for Real Time Health Monitoring (Master's thesis, University of Colorado at Boulder).
Seçkin, A. Ç., Ateş, B., & Seçkin, M. (2023). Review on Wearable Technology in sports: Concepts, Challenges and opportunities. Applied Sciences, 13(18), 10399.
Petek, B. J., Al-Alusi, M. A., Moulson, N., Grant, A. J., Besson, C., Guseh, J. S., ... & Baggish, A. L. (2023). Consumer wearable health and fitness technology in cardiovascular medicine: JACC state-of-the-art review. Journal of the American College of Cardiology, 82(3), 245-264.
Iliadis, A., Tomovic, M., Dervas, D., Psymarnou, M., Christoulas, K., Kouidi, E. J., & Deligiannis, A. P. (2021). A novel mhealth monitoring system during cycling in elite athletes. International Journal of Environmental Research and Public Health, 18(9), 4788.
Tanna, R. S., & Vithalani, C. H. (2023). IoT-based Health Monitoring of Sports Personnel through Wearables Using Machine Learning Technology. Philippine Journal of Science, 152.
Chidambaram, S., Maheswaran, Y., Patel, K., Sounderajah, V., Hashimoto, D. A., Seastedt, K. P., ... & Darzi, A. (2022). Using artificial intelligence-enhanced sensing and wearable technology in sports medicine and performance optimisation. Sensors, 22(18), 6920.
Jewson, J. L., Orchard, J. W., Semsarian, C., Fitzpatrick, J., La Gerche, A., & Orchard, J. J. (2022). Use of a smartphone electrocardiogram to diagnose arrhythmias during exercise in athletes: a case series. European Heart Journal-Case Reports, 6(4), ytac126.
Kwon, J. M., Jo, Y. Y., Lee, S. Y., Kang, S., Lim, S. Y., Lee, M. S., & Kim, K. H. (2022). Artificial intelligence-enhanced smartwatch ECG for heart failure-reduced ejection fraction detection by generating 12-lead ECG. Diagnos-tics, 12(3), 654.
Jothiaruna, N. (2022). SSDMNV2-FPN: A cardiac disorder classification from 12 lead ECG images using deep neural network. Microprocessors and Microsystems, 93, 104627. DOI: https://doi.org/10.1016/j.micpro.2022.104627
Fitzpatrick, J. K., & Goldschlager, N. (2018). The clue is in the U wave: torsades de pointes ventricular tachycardia in a hypokalemic woman on methadone. Annals of Emergency Medicine, 71(4), 473-476. DOI: https://doi.org/10.1016/j.annemergmed.2017.09.007
Jin, Y., Li, Z., Liu, Y., Liu, J., Qin, C., Zhao, L., & Liu, C. (2022). Multi-class 12-lead ECG automatic diagnosis based on a novel subdomain adaptive deep network. Science China Technological Sciences, 65(11), 2617-2630. DOI: https://doi.org/10.1007/s11431-022-2080-6
Grogan, M., Lopez-Jimenez, F., Cohen-Shelly, M., Dispenzieri, A., Attia, Z. I., Abou Ezzedine, O. F., ... & Murphree Jr, D. H. (2021, November). Artificial intelligence–enhanced electrocardiogram for the early detection of cardiac amyloidosis. In Mayo Clinic Proceedings (Vol. 96, No. 11, pp. 2768-2778). Elsevier. DOI: https://doi.org/10.1016/j.mayocp.2021.04.023
Kwon, J. M., Kim, K. H., Eisen, H. J., Cho, Y., Jeon, K. H., Lee, S. Y., ... & Oh, B. H. (2021). Artificial intelligence assessment for early detection of heart failure with preserved ejection fraction based on electrocardiographic fea-tures. European Heart Journal-Digital Health, 2(1), 106-116. https://doi.org/10.1093/ehjdh/ztab098
Kokubo, T., Kodera, S., Sawano, S., Katsushika, S., Nakamoto, M., Takeuchi, H., ... & Komuro, I. (2022). Automatic detection of left ventricular dilatation and hypertrophy from electrocardiograms using deep learning. International Heart Journal, 63(5), 939-947. DOI: https://doi.org/10.1536/ihj.22-132
Omarov, B., Narynov, S., & Zhumanov, Z. (2023). Artificial intelligence-enabled chatbots in mental health: a systematic review. Comput. Mater. Continua 74, 5105–5122 (2022).
Canário-Lemos, R., Machado-Reis, V., Garrido, N., Rafael-Moreira, T., Peixoto, R. ., Nobre-Pinheiro, B., Monteiro, G., & Vilaça-Alves, J. (2023). Control of the intensity of effort. heart rate or rate of perceived effort. Retos, 49, 35–42. https://doi.org/10.47197/retos.v49.97762
Tauda, M., Cruzat Bravo , E. J. ., & Suárez Rojas, F. I. (2024). Dosage strategies of hiit and their influence on vo2max in patients with heart failure: A systematic review. Retos, 58, 683–699. https://doi.org/10.47197/retos.v58.106943
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Retos
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess