Asociación entre la actividad física medida objetivamente y la variabilidad de la frecuencia cardíaca en adultos sanos de atención primaria de salud.

Autores/as

  • Lucimere Bohn 1 Centro de Investigação em Desporto, Educação Física, Exercício e Saúde (CIDEFES) Universidade Lusófona - Centro Universitário Lusófona Porto, Porto, Portugal / 2 Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal https://orcid.org/0000-0001-7988-968X
  • Francisco Javier Soto-Rodríguez 3 Departamento de Ciencias de la Rehabilitación, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile / 4 Facultad de Ciencias de la Salud, Carrera de Kinesiología, Universidad Autónoma de Chile, Temuco, Chile https://orcid.org/0000-0002-7146-8482
  • Fernando Ribeiro 5 School of Health Sciences and Institute of Biomedicine- iBiMED, University of Aveiro, Aveiro, Portugal https://orcid.org/0000-0001-9094-1493
  • José Oliveira 2 Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal https://orcid.org/0000-0002-1829-4196

DOI:

https://doi.org/10.47197/retos.v63.109724

Palabras clave:

función autonómica, variabilidad de la frecuencia cardiaca, factores de riesgo cardiovascular, estilo de vida, atención primaria de salud, autonomic function, cardiovascular risk factors, hear rate variability, lifestyle, physical activity, primary health care

Resumen

Objetivo: Evaluar la asociación entre la actividad física (AF) diaria y la variabilidad de la frecuencia cardíaca en adultos sin enfermedad cardiovascular establecida, inscritos en una unidad de atención primaria de salud.

Métodos: Este estudio transversal incluyó a 197 individuos aparentemente sanos (edad media 47 ± 13 años; 58% mujeres), inscritos en una unidad de atención primaria de salud. Los índices de variabilidad de la frecuencia cardíaca (dominio del tiempo, dominio de la frecuencia e índices no lineales) se derivaron de registros de intervalos RR en reposo de 5 minutos mientras los sujetos respiraban a 12 respiraciones por minuto. La AF diaria se evaluó durante 7 días consecutivos utilizando acelerómetros. Los datos se categorizaron en tiempo sedentario, AF ligera y AF moderada a vigorosa. Se utilizaron análisis de correlación y regresión lineal multivariante para examinar las asociaciones entre la AF diaria y los índices de variabilidad de la frecuencia cardíaca.

Resultados: El tiempo sedentario y la AF ligera no se asociaron con ningún índice de variabilidad de la frecuencia cardíaca. Después de ajustar por edad, sexo y frecuencia cardíaca en reposo, la AF moderada a vigorosa se correlacionó significativamente con la razón entre la potencia de baja frecuencia y la potencia de alta frecuencia (LF/HF) (r2 = -0.18, p = 0.01). La AF moderada a vigorosa (β = -0.14, p = 0.03), junto con el sexo (β = 0.32, p = 0.001), la circunferencia de la cintura (β = 0.14, p = 0.04) y la edad (β = 0.05, p = 0.45), fueron predictores independientes de la razón LF/HF, explicando el 2.3% de su varianza.

Conclusión: El efecto cardioprotector de la AF moderada a vigorosa en los índices de variabilidad de la frecuencia cardíaca no se demostró claramente, aunque hubo una asociación inversa con la razón LF/HF. En contraste, el tiempo sedentario y la actividad física ligera no se asociaron con la función autonómica cardíaca.

Citas

Alansare, A. B., Bates, L. C., Stoner, L., Kline, C. E., Nagle, E., Richard Jennings, J., Hanson, E. D., Faghy, M. A., & Gibbs, B. B. (2021). Associations of sedentary time with heart rate and heart rate variability in adults: A systematic review and meta-analysis of observational studies. In International Journal of Environmental Research and Public Health (Vol. 18, Issue 16). MDPI. https://doi.org/10.3390/ijerph18168508

Alansare, A. B., Gibbs, B. B., Catov, J. M., Jennings, J. R., Kline, C. E., Nagle, E., & Holzman, C. (2022). Association of Physical Activity and Sedentary Time with Cardio-Autonomic Regulation in Women. Journal of Women’s Health, 31(4), 600–608. https://doi.org/10.1089/jwh.2021.0243

Bakrania, K., Edwardson, C. L., Bodicoat, D. H., Esliger, D. W., Gill, J. M. R., Kazi, A., Velayudhan, L., Sinclair, A. J., Sattar, N., Biddle, S. J. H., Khunti, K., Davies, M., & Yates, T. (2016). Associations of mutually exclusive categories of physical activity and sedentary time with markers of cardiometabolic health in English adults: A cross-sectional analysis of the Health Survey for England. BMC Public Health, 16(1). https://doi.org/10.1186/s12889-016-2694-9

Bigger, J. T., Fleiss, J. L., Rolnitzky, L. M., & Steinman, R. C. (1993). The ability of several short-term measures of RR variability to predict mortality after myocardial infarction. Circulation, 88(3), 927–934. https://doi.org/10.1161/01.cir.88.3.927

Billman, G. E. (2009). Cardiac autonomic neural remodeling and susceptibility to sudden cardiac death: effect of endurance exercise training. American Journal of Physiology. Heart and Circulatory Physiology, 297(4), H1171-93. https://doi.org/10.1152/ajpheart.00534.2009

Billman, G. E. (2013). The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. In Frontiers in Physiology: Vol. 4 FEB. https://doi.org/10.3389/fphys.2013.00026

Blair, S. N., Sallis, R. E., Hutber, A., & Archer, E. (2012). Exercise therapy - the public health message. Scandinavian Journal of Medicine & Science in Sports, 22(4), e24-8. https://doi.org/10.1111/j.1600-0838.2012.01462.x

Briet, M., Bozec, E., Laurent, S., Fassot, C., London, G. M., Jacquot, C., Froissart, M., Houillier, P., & Boutouyrie, P. (2006). Arterial stiffness and enlargement in mild-to-moderate chronic kidney disease. Kidney International, 69(2), 350–357. https://doi.org/10.1038/sj.ki.5000047

Buchheit, M., Simon, C., Charloux, A., Doutreleau, S., Piquard, F., & Brandenberger, G. (2005). Heart rate variability and intensity of habitual physical activity in middle-aged persons. Medicine and Science in Sports and Exercise, 37(9), 1530–1534. https://doi.org/10.1249/01.mss.0000177556.05081.77

Buchheit, M., Simon, C., Viola, A. U., Doutreleau, S., Piquard, F., & Brandenberger, G. (2004). Heart rate variability in sportive elderly: relationship with daily physical activity. Medicine and Science in Sports and Exercise, 36(4), 601–605. https://doi.org/10.1249/01.mss.0000121956.76237.b5

del Pozo-Cruz, J., García-Hermoso, A., Alfonso-Rosa, R. M., Alvarez-Barbosa, F., Owen, N., Chastin, S., & del Pozo-Cruz, B. (2018). Replacing Sedentary Time: Meta-analysis of Objective-Assessment Studies. In American Journal of Preventive Medicine (Vol. 55, Issue 3, pp. 395–402). Elsevier Inc. https://doi.org/10.1016/j.amepre.2018.04.042

Dyrstad, S. M., Hansen, B. H., Holme, I. M., & Anderssen, S. A. (2014). Comparison of self-reported versus accelerometer-measured physical activity. Medicine and Science in Sports and Exercise, 46(1), 99–106. https://doi.org/10.1249/MSS.0b013e3182a0595f

Ekelund, U., Brown, W. J., Steene-Johannessen, J., Fagerland, M. W., Owen, N., Powell, K. E., Bauman, A. E., & Lee, I.-M. (2019). Do the associations of sedentary behaviour with cardiovascular disease mortality and cancer mortality differ by physical activity level? A systematic review and harmonised meta-analysis of data from 850 060 participants. British Journal of Sports Medicine, 53(14), 886–894. https://doi.org/10.1136/bjsports-2017-098963

Felber Dietrich, D., Ackermann-Liebrich, U., Schindler, C., Barthélémy, J.-C., Brändli, O., Gold, D. R., Knöpfli, B., Probst-Hensch, N. M., Roche, F., Tschopp, J.-M., von Eckardstein, A., Gaspoz, J.-M., & Sapaldia team. (2008). Effect of physical activity on heart rate variability in normal weight, overweight and obese subjects: results from the SAPALDIA study. European Journal of Applied Physiology, 104(3), 557–565. https://doi.org/10.1007/s00421-008-0800-0

Garet, M., Degache, F., Pichot, V., Duverney, D., Costes, F., DA Costa, A., Isaaz, K., Lacour, J.-R., Barthélémy, J.-C., & Roche, F. (2005). Relationship between daily physical activity and ANS activity in patients with CHF. Medicine and Science in Sports and Exercise, 37(8), 1257–1263. https://doi.org/10.1249/01.mss.0000174881.68546.ec

Golińska, A. K. (2013). Poincaré Plots in Analysis of Selected Biomedical Signals. Studies in Logic, Grammar and Rhetoric, 35(1), 117–127. https://doi.org/10.2478/slgr-2013-0031

Hallman, D. M., Krause, N., Jensen, M. T., Gupta, N., Jørgensen, M. B., & Holtermann, A. (2019). Objectively measured sitting and standing in workers: Cross-sectional relationship with autonomic cardiac modulation. International Journal of Environmental Research and Public Health, 16(4). https://doi.org/10.3390/ijerph16040650

Hillebrand, S., Gast, K. B., De Mutsert, R., Swenne, C. A., Jukema, J. W., Middeldorp, S., Rosendaal, F. R., & Dekkers, O. M. (2013). Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: Meta-analysis and dose-response meta-regression. Europace, 15(5), 742–749. https://doi.org/10.1093/europace/eus341

Imai, J., Katagiri, H., Yamada, T., Ishigaki, Y., Ogihara, T., Uno, K., Hasegawa, Y., Gao, J., Ishihara, H., Sasano, H., & Oka, Y. (2006). Cold exposure suppresses serum adiponectin levels through sympathetic nerve activation in mice. Obesity (Silver Spring, Md.), 14(7), 1132–1141. https://doi.org/10.1038/oby.2006.130

Katzmarzyk, P. T., Powell, K. E., Jakicic, J. M., Troiano, R. P., Piercy, K., Tennant, B., & 2018 PHYSICAL ACTIVITY GUIDELINES ADVISORY COMMITTEE*. (2019). Sedentary Behavior and Health: Update from the 2018 Physical Activity Guidelines Advisory Committee. Medicine and Science in Sports and Exercise, 51(6), 1227–1241. https://doi.org/10.1249/MSS.0000000000001935

Knaeps, S., De Baere, S., Bourgois, J., Mertens, E., Charlier, R., & Lefevre, J. (2018). Substituting sedentary time with light and moderate to vigorous physical activity is associated with better cardiometabolic health. Journal of Physical Activity and Health, 15(3), 197–203. https://doi.org/10.1123/jpah.2017-0102

Koskinen, T., Kähönen, M., Jula, A., Mattsson, N., Laitinen, T., Keltikangas-Järvinen, L., Viikari, J., Välimäki, I., Rönnemaa, T., & Raitakari, O. T. (2009). Metabolic syndrome and short-term heart rate variability in young adults. The cardiovascular risk in young Finns study. Diabetic Medicine : A Journal of the British Diabetic Association, 26(4), 354–361. https://doi.org/10.1111/j.1464-5491.2009.02686.x

La Rovere, M. T., Bigger, J. T., Marcus, F. I., Mortara, A., & Schwartz, P. J. (1998). Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet (London, England), 351(9101), 478–484. https://doi.org/10.1016/s0140-6736(97)11144-8

Lee, I. M., Shiroma, E. J., Lobelo, F., Puska, P., Blair, S. N., Katzmarzyk, P. T., Alkandari, J. R., Andersen, L. B., Bauman, A. E., Brownson, R. C., Bull, F. C., Craig, C. L., Ekelund, U., Goenka, S., Guthold, R., Hallal, P. C., Haskell, W. L., Heath, G. W., Inoue, S., … Wells, J. C. (2012). Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. The Lancet, 380(9838), 219–229. https://doi.org/10.1016/S0140-6736(12)61031-9

Lombardi, F., & Stein, P. K. (2011). Origin of heart rate variability and turbulence: an appraisal of autonomic modulation of cardiovascular function. Frontiers in Physiology, 2, 95. https://doi.org/10.3389/fphys.2011.00095

Maheshwari, A., Norby, F. L., Soliman, E. Z., Adabag, S., Whitse, E. A., Alonso, A., & Chen, L. Y. (2016). Low heart rate variability in a 2-minute electrocardiogram recording is associated with an increased Risk of sudden cardiac death in the general population: The Atherosclerosis Risk in communities study. PLoS ONE, 11(8). https://doi.org/10.1371/journal.pone.0161648

Mancia, G., Fagard, R., Narkiewicz, K., Redon, J., Zanchetti, A., Böhm, M., Christiaens, T., Cifkova, R., De Backer, G., Dominiczak, A., Galderisi, M., Grobbee, D. E., Jaarsma, T., Kirchhof, P., Kjeldsen, S. E., Laurent, S., Manolis, A. J., Nilsson, P. M., Ruilope, L. M., … Task Force for the Management of Arterial Hypertension of the European Society of Hypertension and the European Society of Cardiology. (2014). 2013 ESH/ESC Practice Guidelines for the Management of Arterial Hypertension. Blood Pressure, 23(1), 3–16. https://doi.org/10.3109/08037051.2014.868629

Mendis, Shanthi., Puska, P., Norrving, Bo., World Health Organization., World Heart Federation., & World Stroke Organization. (2011). Global atlas on cardiovascular disease prevention and control. World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization.

Min, K. B., Min, J.-Y., Paek, D., Cho, S.-I., & Son, M. (2008). Is 5-minute heart rate variability a useful measure for monitoring the autonomic nervous system of workers? International Heart Journal, 49(2), 175–181. https://doi.org/10.1536/ihj.49.175

Monfredi, O., Lyashkov, A. E., Johnsen, A.-B., Inada, S., Schneider, H., Wang, R., Nirmalan, M., Wisloff, U., Maltsev, V. A., Lakatta, E. G., Zhang, H., & Boyett, M. R. (2014). Biophysical characterization of the underappreciated and important relationship between heart rate variability and heart rate. Hypertension (Dallas, Tex. : 1979), 64(6), 1334–1343. https://doi.org/10.1161/HYPERTENSIONAHA.114.03782

Mueller, P. J., & Hasser, E. M. (2006). Putative role of the NTS in alterations in neural control of the circulation following exercise training in rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 290(2), R383-92. https://doi.org/10.1152/ajpregu.00455.2005

Nagata, J. M., Vittinghoff, E., Gabriel, K. P., Rana, J. S., Garber, A. K., Moran, A. E., Reis, J. P., Lewis, C. E., Sidney, S., & Bibbins-Domingo, K. (2022). Physical activity from young adulthood to middle age and premature cardiovascular disease events: a 30-year population-based cohort study. International Journal of Behavioral Nutrition and Physical Activity, 19(1). https://doi.org/10.1186/s12966-022-01357-2

Ngampramuan, S., Baumert, M., Beig, M. I., Kotchabhakdi, N., & Nalivaiko, E. (2008). Activation of 5-HT(1A) receptors attenuates tachycardia induced by restraint stress in rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 294(1), R132-41. https://doi.org/10.1152/ajpregu.00464.2007

Niemelä, M., Kiviniemi, A., Kangas, M., Farrahi, V., Leinonen, A. M., Ahola, R., Tammelin, T., Puukka, K., Auvinen, J., Korpelainen, R., & Jämsä, T. (2019). Prolonged bouts of sedentary time and cardiac autonomic function in midlife. Translational Sports Medicine, 2(6), 341–350. https://doi.org/10.1002/tsm2.100

Nunan, D., Donovan, G., Jakovljevic, D. G., Hodges, L. D., Sandercock, G. R. H., & Brodie, D. A. (2009). Validity and reliability of short-term heart-rate variability from the Polar S810. Medicine and Science in Sports and Exercise, 41(1), 243–250. https://doi.org/10.1249/MSS.0b013e318184a4b1

Nunan, D., Sandercock, G. R. H., & Brodie, D. A. (2010). A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing and Clinical Electrophysiology : PACE, 33(11), 1407–1417. https://doi.org/10.1111/j.1540-8159.2010.02841.x

Oliveira, N. L., Ribeiro, F., Teixeira, M., Campos, L., Alves, A. J., Silva, G., & Oliveira, J. (2014). Effect of 8-week exercise-based cardiac rehabilitation on cardiac autonomic function: A randomized controlled trial in myocardial infarction patients. American Heart Journal, 167(5), 753-61.e3. https://doi.org/10.1016/j.ahj.2014.02.001

Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M., Barengo, N. C., Beaton, A. Z., Benjamin, E. J., Benziger, C. P., Bonny, A., Brauer, M., Brodmann, M., Cahill, T. J., Carapetis, J., Catapano, A. L., Chugh, S. S., Cooper, L. T., Coresh, J., … GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. (2020). Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. Journal of the American College of Cardiology, 76(25), 2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010

Sandercock, G. R. H., Bromley, P. D., & Brodie, D. A. (2005). Effects of exercise on heart rate variability: inferences from meta-analysis. Medicine and Science in Sports and Exercise, 37(3), 433–439. https://doi.org/10.1249/01.mss.0000155388.39002.9d

Sandercock, G. R. H., Hardy-Shepherd, D., Nunan, D., & Brodie, D. (2008). The relationships between self-assessed habitual physical activity and non-invasive measures of cardiac autonomic modulation in young healthy volunteers. Journal of Sports Sciences, 26(11), 1171–1177. https://doi.org/10.1080/02640410802004930

Shaffer, F., McCraty, R., & Zerr, C. L. (2014). A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.01040

Sloan, R. P., McCreath, H., Tracey, K. J., Sidney, S., Liu, K., & Seeman, T. (2007). RR interval variability is inversely related to inflammatory markers: the CARDIA study. Molecular Medicine (Cambridge, Mass.), 13(3–4), 178–184. https://doi.org/10.2119/2006–00112.Sloan

Smith, M. L., Hudson, D. L., Graitzer, H. M., & Raven, P. B. (1989). Exercise training bradycardia: the role of autonomic balance. Medicine and Science in Sports and Exercise, 21(1), 40–44. https://doi.org/10.1249/00005768-198902000-00008

Soares-Miranda, L., Negrao, C. E., Antunes-Correa, L. M., Nobre, T. S., Silva, P., Santos, R., Vale, S., & Mota, J. (2012). High levels of C-reactive protein are associated with reduced vagal modulation and low physical activity in young adults. Scandinavian Journal of Medicine & Science in Sports, 22(2), 278–284. https://doi.org/10.1111/j.1600-0838.2010.01163.x

Soares-Miranda, L., Sandercock, G., Vale, S., Santos, R., Abreu, S., Moreira, C., & Mota, J. (2012). Metabolic syndrome, physical activity and cardiac autonomic function. Diabetes/Metabolism Research and Reviews, 28(4), 363–369. https://doi.org/10.1002/dmrr.2281

Soares-Miranda, L., Sattelmair, J., Chaves, P., Duncan, G. E., Siscovick, D. S., Stein, P. K., & Mozaffarian, D. (2014). Physical activity and heart rate variability in older adults: the Cardiovascular Health Study. Circulation, 129(21), 2100–2110. https://doi.org/10.1161/CIRCULATIONAHA.113.005361

Spina, G. D., Gonze, B. B., Barbosa, A. C. B., Sperandio, E. F., & Dourado, V. Z. (2019). Presence of age-and sex-related differences in heart rate variability despite the maintenance of a suitable level of accelerometer-based physical activity. Brazilian Journal of Medical and Biological Research, 52(8). https://doi.org/10.1590/1414-431x20198088

Stamatakis, E., Gale, J., Bauman, A., Ekelund, U., Hamer, M., & Ding, D. (2019). Sitting Time, Physical Activity, and Risk of Mortality in Adults. Journal of the American College of Cardiology, 73(16), 2062–2072. https://doi.org/10.1016/j.jacc.2019.02.031

Stein, P. K., Ehsani, A. A., Domitrovich, P. P., Kleiger, R. E., & Rottman, J. N. (1999). Effect of exercise training on heart rate variability in healthy older adults. American Heart Journal, 138(3 Pt 1), 567–576. https://doi.org/10.1016/s0002-8703(99)70162-6

Strath, S. J., Kaminsky, L. A., Ainsworth, B. E., Ekelund, U., Freedson, P. S., Gary, R. A., Richardson, C. R., Smith, D. T., & Swartz, A. M. (2013). Guide to the Assessment of Physical Activity: Clinical and Research Applications. Circulation, 128(20), 2259–2279. https://doi.org/10.1161/01.cir.0000435708.67487.da

Tarvainen, M. P., Ranta-Aho, P. O., & Karjalainen, P. A. (2002). An advanced detrending method with application to HRV analysis. IEEE Transactions on Bio-Medical Engineering, 49(2), 172–175. https://doi.org/10.1109/10.979357

Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation, 93(5), 1043–1065.

Troiano, R. P., Berrigan, D., Dodd, K. W., Mâsse, L. C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine and Science in Sports and Exercise, 40(1), 181–188. https://doi.org/10.1249/mss.0b013e31815a51b3

Tsuji, H., Larson, M. G., Venditti, F. J., Manders, E. S., Evans, J. C., Feldman, C. L., & Levy, D. (1996). Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation, 94(11), 2850–2855. https://doi.org/10.1161/01.cir.94.11.2850

Voss, A., Schroeder, R., Heitmann, A., Peters, A., & Perz, S. (2015). Short-term heart rate variability--influence of gender and age in healthy subjects. PloS One, 10(3), e0118308. https://doi.org/10.1371/journal.pone.0118308

Wisløff, U., Ellingsen, Ø., & Kemi, O. J. (2009). High-intensity interval training to maximize cardiac benefits of exercise training? Exercise and Sport Sciences Reviews, 37(3), 139–146. https://doi.org/10.1097/JES.0b013e3181aa65fc

Descargas

Publicado

2025-01-01

Cómo citar

Bohn , L. ., Soto-Rodríguez, F. J., Ribeiro, F. ., & Oliveira , J. . (2025). Asociación entre la actividad física medida objetivamente y la variabilidad de la frecuencia cardíaca en adultos sanos de atención primaria de salud. Retos, 63, 50–62. https://doi.org/10.47197/retos.v63.109724

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas