Ejercicio y suplementación con extracto de hierbas antiobesidad sobre los genes IL-6 y FNCD5 en músculo sóleo de ratas obes
DOI:
https://doi.org/10.47197/retos.v65.109550Palabras clave:
Dominio 5 de Fibronectina Tipo III, ejercicio aeróbico, ejercicio de fuerza, interleucina 6, obesidadResumen
Introducción y Objetivo: El ejercicio y las hierbas antiobesidad pueden ser intervenciones eficaces para reducir la obesidad inducida por una dieta rica en grasas (HFD). Nuestro estudio examinó los efectos del ejercicio aeróbico (AE) y el ejercicio de fuerza (RE) en la expresión de FNDC5 e IL-6 en ratas hembra alimentadas con una HFD junto con un extracto de hierbas antiobesidad (AOHME).
Metodología: Cuarenta y dos ratas Wistar hembras jóvenes (12 semanas de edad) se distribuyeron aleatoriamente en siete grupos: (1) control alimentadas con dieta estándar (Con-ND), (2) control alimentadas con HFD (Con-HFD), (3) AE-HFD, (4) RE-HFD, (5) AOHME-HFD, (6) AE-AOHME-HFD y (7) RE-AOHME-HFD. Después de cuatro semanas con HFD para inducir obesidad (excepto Con-ND), las ratas fueron alimentadas con HFD (grupos 2-7) durante 4 semanas adicionales. AE consistió en correr en cinta y el RE en subir escaleras. Los ejercicios se realizaron 5 veces por semana. La suplementación (100 mg/kg, 1 hora post-ejercicio) se administró por sonda nasogástrica a AOHME y agua destilada como placebo a HFD. Las ratas fueron eutanasiadas (48h tras la última intervención) y el músculo sóleo extraído.
Resultados: HFD indujo un aumento significativo del peso corporal en comparación con Con-ND, AE-HFD, RE-HFD, AOHME-HFD, AE-AOHME-HFD y RE-AOHME-HFD. Los genes FNDC5 e IL-6 presentaron una expresión significativamente mayor en Con-ND y el resto de grupos HFD que en el grupo Con-HFD.
Conclusiones: La expresión de FNDC5 e IL-6, reprimida con la dieta rica en grasas, se recuperó con AE y RE sólo o en combinación con AOHME.
Citas
Ahn, N., & Kim, K. (2020). Effects of aerobic and resistance exercise on myokines in high fat diet-induced middle-aged obese rats. International Journal of Environmental Research and Public Health, 17(8), 2685. doi:10.3390/ijerph17082685
Arnab, R. (2017). Survey sampling theory and applications. Academic Press.
Asjari, M., Abedi, B., & Fatolahi, H. (2021). Effects of aerobic training and licorice extract consumption on inflammation and antioxidant states in overweight women. Obesity Medicine, 21, 100271. doi:10.1016/j.obmed.2020.100271
Azevedo Voltarelli, V., Coronado, M., Goncalves Fernandes, L., Cruz Campos, J., Jannig, P. R., Batista Ferreira, J. C., . . . Bernstein, D. (2021). β2-Adrenergic signaling modulates mitochondrial function and morphology in skeletal muscle in response to aerobic exercise. Cells, 10(1), 146. doi:10.3390/cells10010146
Baar, K., Wende, A. R., Jones, T. E., Marison, M., Nolte, L. A., Chen, M., . . . Holloszy, J. O. (2002). Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC‐1. The FASEB Journal, 16(14), 1879-1886. doi:10.1096/fj.02-0367com
Bansal, S., Sharma, K., Gautam, V., Lone, A. A., Malhotra, E. V., Kumar, S., & Singh, R. (2023). A comprehensive review of Bunium persicum: a valuable medicinal spice. Food Reviews International, 39(2), 1184-1202. doi:10.1080/87559129.2021.1929305
Boström, P., Wu, J., Jedrychowski, M. P., Korde, A., Ye, L., Lo, J. C., . . . Long, J. Z. (2012). A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382), 463-468. doi:10.1038/nature10777
Brown, L., Lee, D., Patton, J., Perry Jr, R., Brown, J., Baum, J., . . . Washington, T. (2015). Diet‐induced obesity alters anabolic signalling in mice at the onset of skeletal muscle regeneration. Acta Physiologica, 215(1), 46-57. doi:10.1111/apha.12537
National Research Council, Division on Earth, Life Studies, Institute for Laboratory Animal Research, Committee for the Update of the Guide for the Care, & Use of Laboratory Animals. (2010). Guide for the care and use of laboratory animals.
de Macêdo, S. M., Lelis, D. d. F., Mendes, K. L., Fraga, C. A. d. C., Brandi, I. V., Feltenberger, J. D., . . . Santos, S. H. d. S. (2017). Effects of dietary macronutrient composition on FNDC5 and Irisin in mice skeletal muscle. Metabolic Syndrome and Related Disorders, 15(4), 161-169. doi:10.1089/met.2016.0109
Dehghani, M., Kargarfard, M., Rabiee, F., Nasr-Esfahani, M. H., & Ghaedi, K. (2018). A comparative study on the effects of acute and chronic downhill running vs uphill running exercise on the RNA levels of the skeletal muscles PGC1-α, FNDC5 and the adipose UCP1 in BALB/c mice. Gene, 679, 369-376. doi:10.1016/j.gene.2018.09.024
Ellingsgaard, H., Hauselmann, I., Schuler, B., Habib, A. M., Baggio, L. L., Meier, D. T., . . . Muller, Y. D. (2011). Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nature Medicine, 17(11), 1481-1489. doi:10.1038/nm.2513
Fernández-Verdejo, R., Casas, M., Galgani, J., Jaimovich, E., & Buvinic, S. (2014). Exercise sensitizes skeletal muscle to extracellular ATP for IL-6 expression in mice. International journal of sports medicine, 35(04), 273-279. doi:10.1055/s-0033-1353147
Gomes, M. F. P., Borges, M. E., Rossi, V. d. A., Moura, E. d. O. C. d., & Medeiros, A. (2017). The effect of physical resistance training on baroreflex sensitivity of hypertensive rats. Arquivos Brasileiros de Cardiologia, 108(6), 539-545. doi:10.5935/abc.20170065
Grgic, J., Memon, A. R., Chen, S., Ramirez-Campillo, R., Barreto, G., Haugen, M. E., & Schoenfeld, B. J. (2022). Effects of capsaicin and capsiate on endurance performance: A meta-analysis. Nutrients, 14(21), 4531. doi:10.3390/nu14214531
Guilford, B. L., Parson, J. C., Grote, C. W., Vick, S. N., Ryals, J. M., & Wright, D. E. (2017). Increased FNDC 5 is associated with insulin resistance in high fat‐fed mice. Physiological Reports, 5(13), e13319. doi:10.14814/phy2.13319
Guo, Q., Wei, X., Hu, H., Yang, D., Zhang, B., Fan, X., . . . Wu, Q. (2019). The saturated fatty acid palmitate induces insulin resistance through Smad3-mediated down-regulation of FNDC5 in myotubes. Biochemical and Biophysical Research Communications, 520(3), 619-626. doi:10.1016/j.bbrc.2019.10.077
Guo, Q., Zhang, B., Du, H., Zhu, R., Sun, X., Fan, X., . . . Fan, L. (2023). High-fat diet and palmitate inhibits FNDC5 expression via AMPK-Zfp57 pathway in mouse muscle cells. Chemico-Biological Interactions, 369, 110265. doi:10.1016/j.cbi.2022.110265
Gutfinger, T. (1981). Polyphenols in olive oils. Journal of the American Oil Chemists' Society, 58(11), 966-968. doi:10.1007/BF02659771
Haidari, F., Omidian, K., Rafiei, H., Zarei, M., & Shahi, M. M. (2013). Green tea (Camellia sinensis) supplementation to diabetic rats improves serum and hepatic oxidative stress markers. Iranian Journal of Pharmaceutical Research: IJPR, 12(1), 109.
Hansen, D. K., Juliar, B. E., White, G. E., & Pellicore, L. S. (2011). Developmental toxicity of Citrus aurantium in rats. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 92(3), 216-223. doi:10.1002/bdrb.20308
Hostrup, M., Knudsen, J. G., Kristensen, C. M., Jessen, S., Pilegaard, H., & Bangsbo, J. (2022). Beta2‐agonist increases skeletal muscle interleukin 6 production and release in response to resistance exercise in men. Scandinavian Journal of Medicine & Science in Sports, 32(7), 1099-1108. doi:10.1111/sms.14171
Jung, S., & Kim, K. (2014). Exercise-induced PGC-1α transcriptional factors in skeletal muscle. Integrative Medicine Research, 3(4), 155-160. doi:10.1016/j.imr.2014.09.004
Kang, J. H., Tsuyoshi, G., Han, I. S., Kawada, T., Kim, Y. M., & Yu, R. (2010). Dietary capsaicin reduces obesity‐induced insulin resistance and hepatic steatosis in obese mice fed a high‐fat diet. Obesity, 18(4), 780-787. doi:10.1038/oby.2009.301
Kawada, T., Watanabe, T., Takaishi, T., Tanaka, T., & Iwai, K. (1986). Capsaicin-induced β-adrenergic action on energy metabolism in rats: influence of capsaicin on oxygen consumption, the respiratory quotient, and substrate utilization. Proceedings of the Society for Experimental Biology and Medicine, 183(2), 250-256. doi:10.3181/00379727-183-42414
Kazeminasab, F., Marandi, S. M., Baharlooie, M., Safaeinejad, Z., Nasr-Esfahani, M. H., & Ghaedi, K. (2021). Aerobic exercise modulates noncoding RNA network upstream of FNDC5 in the Gastrocnemius muscle of high-fat-diet-induced obese mice. Journal of Physiology and Biochemistry, 77, 589-600. doi:10.1007/s13105-021-00825-w
Kazeminasab, F., Marandi, S. M., Ghaedi, K., Safaeinejad, Z., Esfarjani, F., & Nasr-Esfahani, M. H. (2018). A comparative study on the effects of high-fat diet and endurance training on the PGC-1α-FNDC5/irisin pathway in obese and nonobese male C57BL/6 mice. Applied Physiology, Nutrition and Metabolism, 43(7), 651-662. doi:10.1139/apnm-2017-0614
Keller, C., Hellsten, Y., Steensberg, A., & Pedersen, B. K. (2006). Differential regulation of IL-6 and TNF-α via calcineurin in human skeletal muscle cells. Cytokine, 36(3-4), 141-147. doi:10.1016/j.cyto.2006.10.014
Khaksari, M., Ahmadi, M., Najafipour, H., & Shahrokhi, N. (2014). Effect of Bunium persicum aqueous extract plus endurance exercise on cardiorespiratory capacity and serum lipid profile. Avicenna Journal of Phytomedicine, 4(2), 118.
Kianmehr, P., Azarbayjani, M. A., Peeri, M., & Farzanegi, P. (2020). Synergic effects of exercise training and octopamine on peroxisome proliferator-activated receptor-gamma coactivator-1a and uncoupling protein 1 mRNA in heart tissue of rat treated with deep frying oil. Biochemistry and Biophysics Reports, 22, 100735. doi:10.1016/j.bbrep.2020.100735
Kim, H.-J., You, M.-K., Wang, Z., Lee, Y.-H., & Kim, H.-A. (2020). Red pepper seed water extract suppresses high-fat diet-induced obesity in C57BL/6 mice. Food Science and Biotechnology, 29, 275-281. doi:10.1007/s10068-019-00710-9
Kim, K.-M., Kawada, T., Ishihara, K., Inoue, K., & Fushiki, T. (1997). Increase in swimming endurance capacity of mice by capsaicin-induced adrenal catecholamine secretion. Bioscience, Biotechnology, and Biochemistry, 61(10), 1718-1723. doi:10.1271/bbb.61.1718
Kurdiova, T., Balaz, M., Vician, M., Maderova, D., Vlcek, M., Valkovic, L., . . . Belan, V. (2014). Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies. The Journal of Physiology, 592(5), 1091-1107. doi:10.1113/jphysiol.2013.264655
Lasker, S., Rahman, M. M., Parvez, F., Zamila, M., Miah, P., Nahar, K., . . . Ahsan, G. U. (2019). High-fat diet-induced metabolic syndrome and oxidative stress in obese rats are ameliorated by yogurt supplementation. Scientific Reports, 9(1), 20026. doi:10.1038/s41598-019-56538-0
Lecker, S. H., Zavin, A., Cao, P., Arena, R., Allsup, K., Daniels, K. M., . . . Forman, D. E. (2012). Expression of the irisin precursor FNDC5 in skeletal muscle correlates with aerobic exercise performance in patients with heart failure. Circulation: Heart Failure, 5(6), 812-818. doi:10.1161/CIRCHEARTFAILURE.112.969543
Lee, M.-S., Lee, S., Doo, M., & Kim, Y. (2016). Green Tea (−)-Epigallotocatechin-3-Gallate induces PGC-1α gene expression in HepG2 cells and 3T3-L1 adipocytes. Preventive Nutrition and Food Science, 21(1), 62. doi:10.3746/pnf.2016.21.1.62
Lira, V. A., Benton, C. R., Yan, Z., & Bonen, A. (2010). PGC-1α regulation by exercise training and its influences on muscle function and insulin sensitivity. American Journal of Physiology-Endocrinology and Metabolism, 299(2), E145-E161. doi:10.1152/ajpendo.00755.2009
Liu, Y., Guo, C., Liu, S., Zhang, S., Mao, Y., & Fang, L. (2021). Eight weeks of high-intensity interval static strength training improves skeletal muscle atrophy and motor function in aged rats via the PGC-1α/FNDC5/UCP1 pathway. Clinical Interventions in Aging, 811-821. doi:10.2147/CIA.S308893
Luo, Z., Ma, L., Zhao, Z., He, H., Yang, D., Feng, X., . . . Cao, T. (2012). TRPV1 activation improves exercise endurance and energy metabolism through PGC-1α upregulation in mice. Cell Research, 22(3), 551-564. doi:10.1038/cr.2011.205
Maak, S., Norheim, F., Drevon, C. A., & Erickson, H. P. (2021). Progress and challenges in the biology of FNDC5 and irisin. Endocrine Reviews, 42(4), 436-456. doi:10.1210/endrev/bnab003
Mae, T., Kitahara, M., Nishiyama, T., Tsukagawa, M., Konishi, E., Kishida, H., . . . Takahashi, K. (2003). A licorice ethanolic extract with peroxisome proliferator-activated receptor-γ ligand-binding activity affects diabetes in KK-Ay mice, abdominal obesity in diet-induced obese C57BL mice and hypertension in spontaneously hypertensive rats. The Journal of Nutrition, 133(11), 3369-3377. doi:10.1093/jn/133.11.3369
Mancini, A., Imperlini, E., Nigro, E., Montagnese, C., Daniele, A., Orrù, S., & Buono, P. (2015). Biological and nutritional properties of palm oil and palmitic acid: effects on health. Molecules, 20(9), 17339-17361. doi:10.3390/molecules200917339
Mir, T. M., Rehman, M. U., Ashfaq, M. K., Qamar, W., Khan, R., Ali, A., . . . Sultana, S. (2022). Carum carvi Modulates Acetaminophen-Induced Hepatotoxicity: Effects on TNF-α, NF-κB, and Caspases. Applied Sciences, 12(21), 11010. doi:10.3390/app122111010
Moreno-Navarrete, J. M., Ortega, F., Serrano, M., Guerra, E., Pardo, G., Tinahones, F., . . . Fernández-Real, J. M. (2013). Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. The Journal of Clinical Endocrinology & Metabolism, 98(4), E769-E778. doi:10.1210/jc.2012-2749
Muscella, A., Stefàno, E., Lunetti, P., Capobianco, L., & Marsigliante, S. (2020). The regulation of fat metabolism during aerobic exercise. Biomolecules, 10(12), 1699. doi:10.3390/biom10121699
Norheim, F., Langleite, T. M., Hjorth, M., Holen, T., Kielland, A., Stadheim, H. K., . . . Drevon, C. A. (2014). The effects of acute and chronic exercise on PGC‐1α, irisin and browning of subcutaneous adipose tissue in humans. The FEBS Journal, 281(3), 739-749. doi:10.1111/febs.12619
Obi, S., Nakajima, T., Hasegawa, T., Kikuchi, H., Oguri, G., Takahashi, M., . . . Toyoda, S. (2017). Heat induces interleukin-6 in skeletal muscle cells via TRPV1/PKC/CREB pathways. Journal of Applied Physiology, 122(3), 683-694. doi:10.1152/japplphysiol.00139.2016
OdEk, P., Deenin, W., Malakul, W., Phoungpetchara, I., & Tunsophon, S. (2020). Antiobesity effect of Carica papaya in highfat diet fed rats. Biomedical Reports, 13(4), 1-1. doi:10.3892/br.2020.1337
Ogunruku, O. O., Ogunyemi, B. O., Oboh, G., Babatunde, O. O., & Boligon, A. A. (2019). Modulation of dopamine metabolizing enzymes and antioxidant status by Capsicum annuum Lin in rotenone-intoxicated rat brain. Toxicology Reports, 6, 795-802. doi:10.1016/j.toxrep.2019.07.012
Ojha, S., Golechha, M., Kumari, S., Bhatia, J., & Arya, D. S. (2013). Glycyrrhiza glabra protects from myocardial ischemia–reperfusion injury by improving hemodynamic, biochemical, histopathological and ventricular function. Experimental and Toxicologic Pathology, 65(1-2), 219-227. doi:10.1016/j.etp.2011.08.011
Pedersen, B. K. (2009). The diseasome of physical inactivity–and the role of myokines in muscle–fat cross talk. The Journal of Physiology, 587(23), 5559-5568. doi:10.1113/jphysiol.2009.179515
Peixinho-Pena, L. F., Fernandes, J., de Almeida, A. A., Gomes, F. G. N., Cassilhas, R., Venancio, D. P., . . . Arida, R. M. (2012). A strength exercise program in rats with epilepsy is protective against seizures. Epilepsy & Behavior, 25(3), 323-328. doi:10.1016/j.yebeh.2012.08.011
Qin, F., Dong, Y., Wang, S., Xu, M., Wang, Z., Qu, C., . . . Zhao, J. (2020). Maximum oxygen consumption and quantification of exercise intensity in untrained male Wistar rats. Scientific Reports, 10(1), 11520. doi:10.1038/s41598-020-68455-8
Rahmati-Ahmadabad, S., Rostamkhani, F., Meftahi, G. H., & Shirvani, H. (2021). Comparative effects of high-intensity interval training and moderate-intensity continuous training on soleus muscle fibronectin type III domain-containing protein 5, myonectin and glucose transporter type 4 gene expressions: a study on the diabetic rat model. Molecular Biology Reports, 48(8), 6123-6129. doi:10.1007/s11033-021-06633-1
Roca-Rivada, A., Castelao, C., Senin, L. L., Landrove, M. O., Baltar, J., Crujeiras, A. B., . . . Pardo, M. (2013). FNDC5/irisin is not only a myokine but also an adipokine. PloS one, 8(4), e60563. doi:10.1371/journal.pone.0060563
Seo, H., Kwon, T., & Kim, Y. (2003). The effects of red-pepper ingestion on energy metabolism during exercise in rat and athletes. Korean Journal of Exercise and Nutrition, 7, 181-188.
Shin, K. O., Bae, J. Y., Woo, J., Jang, K. S., Kim, K. S., Park, J. S., . . . Kang, S. (2015). The effect of exercise on expression of myokine and angiogenesis mRNA in skeletal muscle of high fat diet induced obese rat. Journal of Exercise Nutrition & Biochemistry, 19(2), 91. doi:10.5717/jenb.2015.15061006
Shirvani, H., Rahmati-Ahmadabad, S., Broom, D. R., & Mirnejad, R. (2019). Eccentric resistance training and β-hydroxy-β-methylbutyrate free acid affects muscle PGC-1α expression and serum irisin, nesfatin-1 and resistin in rats. Journal of Experimental Biology, 222(10), jeb198424. doi:10.1242/jeb.198424
Shojaee-Moradie, F., Baynes, K., Pentecost, C., Bell, J., Thomas, E., Jackson, N., . . . Bowes, S. (2007). Exercise training reduces fatty acid availability and improves the insulin sensitivity of glucose metabolism. Diabetologia, 50, 404-413. doi:10.1007/s00125-006-0498-7
Spangenburg, E. E., Brown, D. A., Johnson, M. S., & Moore, R. L. (2006). Exercise increases SOCS‐3 expression in rat skeletal muscle: potential relationship to IL‐6 expression. The Journal of Physiology, 572(3), 839-848. doi:10.1113/jphysiol.2005.104315
Stohs, S. J., Preuss, H. G., & Shara, M. (2011). A review of the receptor‐binding properties of p‐synephrine as related to its pharmacological effects. Oxidative Medicine and Cellular Longevity, 2011(1), 482973. doi:10.1155/2011/482973
Vesali, M., Azarbayjani, M. A., & Peeri, M. (2021). Effect of aerobic training and octopamine supplementation on the expression of octopamine receptors in the visceral adipose tissue of rats exposed to deep fried oils. Gene, Cell and Tissue, 8(4). doi:10.5812/gct.110290
Xiong, X.-Q., Geng, Z., Zhou, B., Zhang, F., Han, Y., Zhou, Y.-B., . . . Li, Y.-H. (2018). FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity. Metabolism, 83, 31-41. doi:10.1016/j.metabol.2018.01.013
Yang, S., Liu, L., Meng, L., & Hu, X. (2019). Capsaicin is beneficial to hyperlipidemia, oxidative stress, endothelial dysfunction, and atherosclerosis in Guinea pigs fed on a high-fat diet. Chemico-Biological Interactions, 297, 1-7. doi:10.1016/j.cbi.2018.10.006
Yang, X.-Y., Tse, M. C., Hu, X., Jia, W.-h., Du, G.-h., & Chan, C. B. (2018). Interaction of CREB and PGC-1α induces fibronectin type III domain-containing protein 5 expression in C2C12 myotubes. Cellular Physiology and Biochemistry, 50(4), 1574-1584. doi:10.1159/000494655
Yang, Z., Chen, X., Chen, Y., & Zhao, Q. (2015). Decreased irisin secretion contributes to muscle insulin resistance in high-fat diet mice. International Journal of Clinical and Experimental Pathology, 8(6), 6490.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Maral Jalali, Mehdi Zargani, Saleh Rahmati, Reza Hajiaghaee, Masoumeh Helalizadeh, Enrique Roche, Ana María Celorrio San Miguel, Diego Fernández Lázaro, Mohammad Ali Azarbayjani

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess