Asociación entre la composición corporal total y segmentaria y el rendimiento anaeróbico en atletas de Crossfit®: diferencias entre sexos y predicción del rendimiento

Autores/as

  • Tomás Ponce-García Department of Human Physiology, Histology, Pathological Anatomy and Sports Physical Education, University of Málaga, 29071 Málaga https://orcid.org/0000-0003-1798-2189
  • Jerónimo García-Romero Department of Human Physiology, Histology, Pathological Anatomy and Sports Physical Education, University of Málaga, 29071 Málaga
  • Laura Carrasco-Fernández 1 Department of Human Physiology, Histology, Pathological Anatomy and Sports Physical Education, University of Málaga, 29071 Málaga, Spain
  • Alejandro Castillo-Dominguez Department of Nursing and Podiatry, University of Málaga, 29071, Spain. https://orcid.org/0000-0001-8524-1847
  • Javier Benítez-Porres Universidad de Málaga https://orcid.org/0000-0001-7546-7965

DOI:

https://doi.org/10.47197/retos.v62.109115

Palabras clave:

rendimiento deportivo, rendimiento anaeróbico, composición corporal, atletas, CrossFit, entrenamiento funcional de alta intensidad

Resumen

El objetivo principal del presente estudio fue establecer la asociación entre las variables de composición corporal (CC) total y segmentaria y el rendimiento anaeróbico, así como crear los modelos de regresión que mejor predigan dicho rendimiento en atletas de CrossFit® (CF). Cincuenta atletas, 25 hombres y 25 mujeres (edad: 33,26 ± 6,81 años; masa corporal: 72,57 ± 12,17 kg; estatura: 169,55 ± 8,71 cm; IMC: 25,06 ± 2,31 kg-m-2) fueron reclutados para participar y se sometieron a un análisis de la CC mediante absorciometría de rayos X de energía dual (DXA) y a una prueba de laboratorio a máximo esfuerzo en un cicloergómetro (Wingate) para determinar su rendimiento anaeróbico. Los resultados muestran una correlación significativa entre los valores de CC y el rendimiento, que va de moderada (r = -0,34, p = 0,015) a casi perfecta (r = 0,96, p < 0,01). Además, los modelos de predicción del rendimiento creados mostraron capacidades predictivas que oscilaron entre el 19% (p = 0,017) y el 93% (p < 0,001). Todos los modelos de predicción se crearon utilizando variables de masa magra total o segmentaria, excluyendo otras. Las variables de composición corporal y rendimiento estudiadas encontraron diferencias significativas entre hombres y mujeres. Los resultados demuestran que las variables de composición corporal son indicadores cruciales del rendimiento anaeróbico en atletas de CF. En este sentido, sería recomendable que los profesionales responsables del rendimiento deportivo consideren esta información al momento de monitorizar a los atletas durante la temporada o al diseñar programas de entrenamiento específicos. Del mismo modo, el uso de ecuaciones de predicción podría resultar útil como herramienta para estimar los valores de potencia máxima y media.

Citas

Alsamir Tibana, R., Manuel Frade de Sousa, N., Prestes, J., da Cunha Nascimento, D., Ernesto, C., Falk Neto, J. H., Kennedy, M. D., & Azevedo Voltarelli, F. (2019). Is Perceived Exertion a Useful Indicator of the Metabolic and Cardiovascular Responses to a Metabolic Conditioning Session of Functional Fitness? Sports, 7(7), 161. https://doi.org/10.3390/sports7070161

Alvero-Cruz, J. R., Cabanas Armesilla, M. D., Herrero De Lucas, A., Martínez Riaza, L., Moreno Pascual, C., Porta Manzañido, J., Sillero Quintana, M., & Sirvent Belando, J. E. (2010). Protocolo de valoración de la composición corporal para el reconocimiento médico-deportivo. documento de consenso del grupo español de cineantropometría (grec)de la federación española de medicina del deporte (femede). Versión 2010. Archivos de Medicina Del Deporte, 26(139), 330–344. https://www.academia.edu/download/40094596/A_JJ_2010_Documento_de_consenso_330_139.pdf

Alvero-Cruz, J. R., Parent Mathias, V., Garcia Romero, J., Carrillo de Albornoz-Gil, M., Benítez-Porres, J., Ordoñez, F. J., Rosemann, T., Nikolaidis, P. T., & Knechtle, B. (2019). Prediction of Performance in a Short Trail Running Race: The Role of Body Composition. Frontiers in Physiology, 10(October), 1–7. https://doi.org/10.3389/fphys.2019.01306

Bar-Or, O. (1987). The Wingate Anaerobic Test An Update on Methodology, Reliability and Validity. Sports Medicine, 4(6), 381–394. https://doi.org/10.2165/00007256-198704060-00001

Bellar, D., Hatchett, A., Judge, L. W., Breaux, M. E., & Marcus, L. (2015). The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise. Biology of Sport, 32(4), 315–320. https://doi.org/10.5604/20831862.1174771

Ben Mansour, G., Kacem, A., Ishak, M., Grélot, L., & Ftaiti, F. (2021). The effect of body composition on strength and power in male and female students. BMC Sports Science, Medicine and Rehabilitation, 13(1), 1–11. https://doi.org/10.1186/s13102-021-00376-z

Beneke, R., Pollmann, C., Bleif, I., Leithäuser, R. M., & Hütler, H. (2002). How anaerobic is the wingate anaerobic test for humans? European Journal of Applied Physiology, 87(4–5), 388–392. https://doi.org/10.1007/s00421-002-0622-4

Butcher, S., Neyedly, T., Horvey, K., & Benko, C. (2015). Do physiological measures predict selected CrossFit® benchmark performance? Open Access Journal of Sports Medicine, 241. https://doi.org/10.2147/oajsm.s88265

Carreker, J. D., & Grosicki, G. J. (2020). Physiological Predictors of Performance on the CrossFit “Murph” Challenge. Sports, 8(7). https://doi.org/10.3390/sports8070092

Chiarlitti, N. A., Delisle-Houde, P., Reid, R. E. R., Kennedy, C., & Andersen, R. E. (2018). Importance of body composition in the national hockey league combine physiological assessments. Journal of Strength and Conditioning Research, 32(11), 3135–3142. https://doi.org/10.1519/JSC.0000000000002309

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences Second Edition (2nd ed.). Lawrence Erlbaum Associates. https://doi.org/https://doi.org/10.4324/9780203771587

Collins, K. S., Christensen, B. K., Orr, R. M., Dulla, J. M., Dawes, J. J., & Lockie, R. G. (2022). Analysis of Total and Segmental Body Composition Relative to Fitness Performance Measures in Law Enforcement Recruits. International Journal of Exercise Science, 15(4), 245–260.

Corredor-Serrano, Luisa. F., García-Chaves, Diego. C., Dávila Bernal, A., & Lay Villay, Wan. S. (2023). Composición corporal, fuerza explosiva y agilidad en jugadores de baloncesto profesional. Retos, 49, 189–195.

Czeck, M. A., Roelofs, E. J., Dietz, C., Bosch, T. A., & Dengel, D. R. (2021). Body Composition and On-Ice Skate Times for National Collegiate Athletic Association Division I Collegiate Male and Female Ice Hockey Athletes. Journal of Strength and Conditioning Research, 36(1), 187–192. www.nsca.com

Di Vincenzo, O., Marra, M., Di Gregorio, A., Caldara, A., De Lorenzo, A., & Scalfi, L. (2019). Body composition and physical fitness in elite water polo athletes. IcSPORTS 2019 - Proceedings of the 7th International Conference on Sport Sciences Research and Technology Support, 157–160. https://doi.org/10.5220/0008161401570160

Feito, Y., Heinrich, K., Butcher, S., & Poston, W. (2018). High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports, 6(3), 76. https://doi.org/10.3390/sports6030076

Franchini, E. (2023). Energy System Contributions during Olympic Combat Sports: A Narrative Review. In Metabolites (Vol. 13, Issue 2). MDPI. https://doi.org/10.3390/metabo13020297

Gacesa, J. Z., Popadic, ;, Barak, O. F. ;, & Grujic, N. G. (2009). Maximal anaerobic power test in athletes of different sport disciplines. Journal of Strength and Conditioning Research, 23, 751. https://doi.org/10.1519/JSC.0b013e3181a07a9a

García-Chaves, D. C., Corredor-Serrano, L. F., & Díaz Millán, S. (2023). Relación entre la fuerza explosiva, composición corporal, somatotipo y algunos parámetros de desempeño físico en jugadores de rugby sevens. Retos, 47, 103–109.

Guo S, S., Zeller, C., Chumlea, W. C., & Siervogel, R. M. (1999). Aging, body composition, and lifestyle: the Fels Longitudinal Study. The American Journal of Clinical Nutrition, 70(3), 405–411. https://doi.org/https://doi.org/10.1093/ajcn/70.3.405

Hofman, N., Orie, J., Hoozemans, M. J. M., Foster, C., & De Koning, J. J. (2017). Wingate test as a strong predictor of 1500-m performance in elite speed skaters. International Journal of Sports Physiology and Performance, 12(10). https://doi.org/10.1123/ijspp.2016-0427

Ishida, A., Travis, S. K., & Stone, M. H. (2021). Associations of body composition, maximum strength, power characteristics with sprinting, jumping, and intermittent endurance performance in male intercollegiate soccer players. Journal of Functional Morphology and Kinesiology, 6(1), 0–7. https://doi.org/10.3390/jfmk6010007

Kale, M., & Akdoğan, E. (2020). Relationships between body composition and anaerobic performance parameters in female handball players. Physical Education of Students, 24(5), 265–270. https://doi.org/10.15561/20755279.2020.0502

Kim, J., Cho, H. C., Jung, H. S., & Yoon, J. D. (2011). Influence of performance level on anaerobic power and body composition in elite male Judoists. Journal of Strength and Conditioning Research, 25(5), 1346–1354. https://doi.org/10.1519/JSC.0b013e3181d6d97c

Kirchengast, S. (2010). Gender Differences in Body Composition from Childhood to Old Age: An Evolutionary Point of View. Journal of Life Sciences, 2(1), 1–10. https://doi.org/10.1080/09751270.2010.11885146

Lara-Sánchez, A. J., Zagalaz, M. L., Berdejo-Del-Fresno, D., & Martínez-López, E. J. (2011). Jump peak power assessment through power prediction equations in different samples. Journal of Strength and Conditioning Research, 25(7), 1957–1962. https://doi.org/10.1519/JSC.0b013e3181e06ef8

Lockie, R. G., Carlock, B. N., Ruvalcaba, T. J., Dulla, J. M., Orr, R. M., Dawes, J. J., & McGuire, M. B. (2021). Skeletal Muscle Mass and Fat Mass Relationships With Physical Fitness Test Performance in Law Enforcement Recruits Before Academy. Journal of Strength and Conditioning Research, 35(5), 1287–1295. https://doi.org/10.1519/JSC.0000000000003918

Losnegard, T., Myklebust, H., & Hallén, J. (2012). Anaerobic capacity as a determinant of performance in sprint skiing. Medicine and Science in Sports and Exercise, 44(4), 673–681. https://doi.org/10.1249/MSS.0b013e3182388684

Lukaski, H., & Raymond-Pope, C. J. (2021). New Frontiers of Body Composition in Sport. In International Journal of Sports Medicine (Vol. 42, Issue 7, pp. 588–601). Georg Thieme Verlag. https://doi.org/10.1055/a-1373-5881

Maciejczyk, M., Wiecek, M., Szymura, J., Szygula, Z., & Brown, L. E. (2015). Influence of increased body mass and body composition on cycling anaerobic power. Journal of Strength and Conditioning Research, 29(1), 58–65. https://doi.org/10.1519/JSC.0000000000000727

Mangine, G. T., & McDougle, J. M. (2022). CrossFit® open performance is affected by the nature of past competition experiences. BMC Sports Science, Medicine and Rehabilitation, 14(1). https://doi.org/10.1186/s13102-022-00434-0

Mangine, G. T., McDougle, J. M., & Feito, Y. (2022). Relationships Between Body Composition and Performance in the High-Intensity Functional Training Workout “Fran” are Modulated by Competition Class and Percentile Rank. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.893771

Mangine, G. T., Tankersley, J. E., McDougle, J. M., Velazquez, N., Roberts, M. D., Esmat, T. A., VanDusseldorp, T. A., & Feito, Y. (2020). Predictors of CrossFit Open Performance. Sports, 8(7). https://doi.org/10.3390/sports8070102

Maud, P. J., & Shultz, B. B. (1986). Gender comparisons in anaerobic power and anaerobic capacity tests. British Journal of Sports Medicine, 20(2), 51–54. https://doi.org/10.1136/bjsm.20.2.51

Menargues-Ramírez, R., Sospedra, I., Holway, F., Hurtado-Sánchez, J. A., & Martínez-Sanz, J. M. (2022). Evaluation of Body Composition in CrossFit® Athletes and the Relation with Their Results in Official Training. International Journal of Environmental Research and Public Health, 19(17). https://doi.org/10.3390/ijerph191711003

Michalik, K., Szczepan, S., Markowski, M., & Zatoń, M. (2022). The Relationship Among Body Composition and Anaerobic Capacity and the Sport Level of Elite Male Motorcycle Speedway Riders. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.812958

Pearson, J. R., Wadhi, T., Rauch, J. T., Thiel, J., Andersen, J. C., O’Sullivan, J., & De Souza, E. O. (2019). The Relationship Between Body Composition with Peak Force and Anaerobic Power in Collegiate Baseball Players. Medicine & Science in Sports & Exercise, 51(6S), 913–913. https://doi.org/10.1249/01.mss.0000563237.71052.cd

Rudnev, S. G. (2020). Body composition in athletes: History, methodology and computational prospects. Advances in Intelligent Systems and Computing, 1028 AISC, 159–165. https://doi.org/10.1007/978-3-030-35048-2_19

Sanfilippo, J., Krueger, D., Heiderscheit, B., & Binkley, N. (2019). Dual-Energy X-Ray Absorptiometry Body Composition in NCAA Division I Athletes: Exploration of Mass Distribution. Sports Health, 11(5), 453–460. https://doi.org/10.1177/1941738119861572

Sauvé, B., Haugan, M., & Paulsen, G. (2024). Physical and Physiological Characteristics of Elite CrossFit Athletes. Sports, 12(6). https://doi.org/10.3390/sports12060162

Smith, J. C., & Hill, D. W. (1991). Contribution of energy systems during a Wingate power test. British Journal of Sports Medicine, 25(4), 196–199. https://doi.org/10.1136/bjsm.25.4.196

Stephenson, M. L., Smith, D. T., Heinbaugh, E. M., Moynes, R. C., Rockey, S. S., Thomas, J. J., & Dai, B. (2015). Total and Lower Extremity Lean Mass Percentage Positively Correlates with Jump Performance. Journal of Strength and Conditioning Research, 29(8), 2167–2175. https://doi.org/10.1519/JSC.0000000000000851

Stickley, C. D., Wages, J. J., Kimura, I. F., & Hetzler, R. K. (2012). Validation of a nonexercise prediction equation of anaerobic power. Journal of Strength and Conditioning Research, 26(11), 3067–3074. https://doi.org/10.1519/JSC.0b013e318243fa1f

Triki, M., Rebai, H., Abroug, T., Masmoudi, K., Fellmann, N., Zouari, N., & Tabka, Z. (2012). Comparative study of body composition and anaerobic performance between football and judo groups. Science and Sports, 27(5), 293–299. https://doi.org/10.1016/j.scispo.2011.07.004

Vargas, V. Z., De Lira, C. A. B., Vancini, R. L., Rayes, A. B. R., & Andrade, M. S. (2018). Fat mass is negatively associated with the physiological ability of tissue to consume oxygen. Motriz. Revista de Educacao Fisica, 24(4). https://doi.org/10.1590/S1980-6574201800040010

Wulan, S. N., Westerterp, K. R., & Plasqui, G. (2010). Ethnic differences in body composition and the associated metabolic profile: A comparative study between Asians and Caucasians. In Maturitas (Vol. 65, Issue 4, pp. 315–319). https://doi.org/10.1016/j.maturitas.2009.12.012

Zaras, N., Stasinaki, A.-N., Spiliopoulou, P., Hadjicharalambous, M., & Terzis, G. (2020). Lean Body Mass, Muscle Architecture, and Performance in Well-Trained Female Weightlifters. Sports, 8(67). https://doi.org/https://doi.org/10.3390/sports8050067

Zeitz, E. K., Cook, L. F., Dexheimer, J. D., Lemez, S., Leyva, W. D., Terbio, I. Y., Tran, J. R., & Jo, E. (2020). The Relationship between CrossFit® Performance and Laboratory-Based Measurements of Fitness. Sports, 8(8). https://doi.org/10.3390/sports8080112

Descargas

Publicado

2024-11-20

Cómo citar

Ponce-García, T., García-Romero, J., Carrasco-Fernández, L., Castillo-Dominguez, A., & Benítez-Porres, J. (2024). Asociación entre la composición corporal total y segmentaria y el rendimiento anaeróbico en atletas de Crossfit®: diferencias entre sexos y predicción del rendimiento. Retos, 62, 543–552. https://doi.org/10.47197/retos.v62.109115

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas