Impactos diferenciales del ejercicio físico de alta y baja intensidad en la actividad de las ondas cerebrales y la conectividad funcional en atletas profesionales: una revisión sistemática (Differential impacts of high and low-intensity physical exercise on brain wave activity and functional connectivity in professional athletes: a systematic review)
DOI:
https://doi.org/10.47197/retos.v60.108998Palabras clave:
Brain , Emotions , Physical Fitness , Cognition , Athletes , Self-ControlResumen
Introducción: Esta revisión sistemática explora los impactos diferenciales del ejercicio físico de alta y baja intensidad sobre la actividad de las ondas cerebrales y la conectividad funcional en atletas profesionales. El estudio tiene como objetivo dilucidar cómo las diferentes intensidades del ejercicio influyen en las respuestas cognitivas y emocionales, la conectividad cerebral y la salud mental en general. Además, examina los posibles efectos sinérgicos de integrar el entrenamiento de neurofeedback con el ejercicio físico. Método: Se realizó una búsqueda bibliográfica exhaustiva en bases de datos como PubMed, Scopus y Google Scholar. Las palabras clave incluyeron "ejercicio de alta intensidad", "ejercicio de baja intensidad", "actividad de ondas cerebrales", "conectividad funcional", "atletas profesionales" y "rendimiento cognitivo". Los criterios de inclusión fueron estudios publicados en revistas revisadas por pares que involucraron a atletas profesionales y examinaron el impacto de la intensidad del ejercicio en la actividad de las ondas cerebrales y la conectividad funcional. La extracción de datos se centró en el diseño del estudio, el tamaño de la muestra, la intensidad del ejercicio, las técnicas de neuroimagen, la actividad de las ondas cerebrales y los resultados de la conectividad funcional. Resultados: Se descubrió que el ejercicio físico de alta intensidad induce cambios significativos en la conectividad funcional dentro de las redes de afecto y recompensa, mejora el estado de ánimo y mejora el rendimiento cognitivo a través de una mayor coherencia y sincronización de las ondas cerebrales. El ejercicio de baja intensidad mejoró principalmente el procesamiento cognitivo y de atención al aumentar la conectividad funcional en estado de reposo en la red frontoparietal. Se demostró que el entrenamiento con neurofeedback mejora la actividad de las ondas cerebrales, reduce los niveles de estrés y aumenta el autocontrol sobre los factores fisiológicos. El enfoque combinado de neurofeedback y ejercicio físico demostró potencial para optimizar el rendimiento físico y mental en los atletas. Conclusión: Los hallazgos indican que el ejercicio de alta intensidad conduce a cambios significativos y prolongados en la conectividad cerebral y el rendimiento cognitivo, mientras que el ejercicio de baja intensidad beneficia el procesamiento cognitivo y atencional. La discusión presenta la teoría de la sinergia del neurofeedback y la aptitud física, que postula que la integración del neurofeedback con el ejercicio físico puede conducir a mejoras óptimas tanto en la aptitud física como en la salud mental. Este enfoque combinado sugiere una estrategia prometedora para mejorar el rendimiento deportivo general y el bienestar mental. Las investigaciones futuras deberían centrarse en medidas estandarizadas y estudios a largo plazo para validar aún más estos hallazgos y explorar los mecanismos neurofisiológicos subyacentes.
Palabra clave: Cerebro, Emociones, Aptitud Física, Cognición, Atletas, Autocontrol
Abstract. Introduction: This systematic review explores the differential impacts of high and low-intensity physical exercise on brain wave activity and functional connectivity in professional athletes. The study aims to elucidate how varying exercise intensities influence cognitive and emotional responses, brain connectivity, and overall mental health. Additionally, it examines the potential synergistic effects of integrating neurofeedback training with physical exercise. Method: A comprehensive literature search was conducted using databases such as PubMed, Scopus, and Google Scholar. Keywords included "high-intensity exercise," "low-intensity exercise," "brain wave activity," "functional connectivity," "professional athletes," and "cognitive performance." Inclusion criteria were studies published in peer-reviewed journals involving professional athletes and examining the impact of exercise intensity on brain wave activity and functional connectivity. Data extraction focused on study design, sample size, exercise intensity, neuroimaging techniques, brain wave activity, and functional connectivity outcomes. Results: High-intensity physical exercise was found to induce significant changes in functional connectivity within affect and reward networks, enhance mood, and improve cognitive performance through increased brain wave coherence and synchronization. Low-intensity exercise primarily enhanced cognitive and attentional processing by increasing resting-state functional connectivity in the fronto-parietal network. Neurofeedback training was shown to enhance brain wave activity, reduce stress levels, and increase self-control over physiological factors. The combined approach of neurofeedback and physical exercise demonstrated potential for optimizing both mental and physical performance in athletes. Conclusion: The findings indicate that high-intensity exercise leads to significant and prolonged changes in brain connectivity and cognitive performance, while low-intensity exercise benefits cognitive and attentional processing. The discussion introduces the Neurofeedback and Physical Fitness Synergy Theory, which posits that integrating neurofeedback with physical exercise can lead to optimal improvements in both physical fitness and mental health. This combined approach suggests a promising strategy for enhancing overall athletic performance and mental well-being. Future research should focus on standardized measures and long-term studies to further validate these findings and explore the underlying neurophysiological mechanisms.
Keywords: Brain, Emotions, Physical Fitness, Cognition, Athletes, Self-Control
Citas
Adamek, J. F., Malani, R., Petruzzello, S. J., & Gothe, N. P. (2023). The Effect Of Affect During High Intensity Interval Training On Executive Function. In Medicine and Science in Sports and Exercise (Vol. 55, Issue 9S, p. 692). https://doi.org/10.1249/01.mss.0000986344.23185.3b
Askovic, M., Soh, N., Elhindi, J., & Harris, A. W. F. (2023). Neurofeedback for post-traumatic stress disorder: systematic review and meta-analysis of clinical and neurophysiological outcomes. European Journal of Psychotraumatology, 14. https://doi.org/10.1080/20008066.2023.2257435
Benarroch, E. E. (2022). What Muscle Signals Mediate the Beneficial Effects of Exercise on Cognition? Neurology, 99, 298–304. https://doi.org/10.1212/WNL.0000000000201049
Cefis, M., Chaney, R., Wirtz, J., Méloux, A., Quirié, A., Leger, C., Prigent-Tessier, A., & Garnier, P. (2023). Molecular mechanisms underlying physical exercise-induced brain BDNF overproduction. Frontiers in Molecular Neuroscience, 16. https://doi.org/10.3389/fnmol.2023.1275924
Chen, C., & Nakagawa, S. (2023). Recent advances in the study of the neurobiological mechanisms behind the effects of physical activity on mood, resilience and emotional disorders. Advances in Clinical and Experimental Medicine. https://doi.org/10.17219/acem/171565
Consorti, A., Consorti, A., Marco, I. Di, & Sansevero, G. (2021). Physical Exercise Modulates Brain Physiology Through a Network of Long- and Short-Range Cellular Interactions. Frontiers in Molecular Neuroscience, 14, 710303. https://doi.org/10.3389/FNMOL.2021.710303
Contreras-Osorio, F., Ramirez-Campillo, R., Cerda-Vega, E., Campos-Jara, R., Martínez-Salazar, C., Reigal, R. E., Morales-Sánchez, V., Sierralta, S. A., & Campos-Jara, C. (2022). Effects of Physical Exercise on Executive Function in Adults with Depression: A Systematic Review and Meta-Analysis Protocol. Sustainability, 14(22), 15158. https://doi.org/10.3390/su142215158
Dowllah, I. M., López-Alvarenga, J. C., Maestre, G. E., Karabulut, U. S., Lehker, M., & Karabulut, M. (2023). Relationship Between Cognitive Performance, Physical Activity, and Socio-Demographic/Individual Characteristics Among Aging Americans. Journal of Alzheimer’s Disease, 1–13. https://doi.org/10.3233/jad-221151
Ezure, S., Yamanaka, K., & Waki, H. (2023). Functional connectivity in central nucleus of amygdala, paraventricular hypothalamus, and nucleus tractus solitarii circuits during high-intensity endurance treadmill exercise in rats. The Journal of Physical Fitness and Sports Medicine, 12(3), 69–75. https://doi.org/10.7600/jpfsm.12.69
Festa, F., Medori, S., & Macri, M. (2023). Move Your Body, Boost Your Brain: The Positive Impact of Physical Activity on Cognition across All Age Groups. Advances in Cardiovascular Diseases, 11(6), 1765. https://doi.org/10.3390/biomedicines11061765
Gallo, G., Geda, E., Codella, R., Faelli, E., Panasci, M., Ranieri, L. E., Pollastri, L., Brighenti, S., Molino, L., Riba, U., Luzi, L., Ruggeri, P., & Filipas, L. (2022). Effects of Bilateral Dorsolateral Prefrontal Cortex High-Definition Transcranial Direct-Current Stimulation on Physiological and Performance Responses at Severe-Intensity Exercise Domain in Elite Road Cyclists. International Journal of Sports Physiology and Performance, 17(7), 1–9. https://doi.org/10.1123/ijspp.2022-0019
Goulet, N., McCormick, J. J., McManus, M. K., King, K. E., & Kenny, G. P. (2023). Acute Aerobic Exercise Increases Brain-Derived Neurotrophic Factor In Peripheral Blood Mononuclear Cells Independently Of Exercise Intensity. In Medicine and Science in Sports and Exercise (Vol. 55, Issue 9S, p. 478). https://doi.org/10.1249/01.mss.0000984272.88068.c7
Han, Y. M. Y., Chan, M. M. Y., Ahorsu, D. K., & Tsang, H. W. H. (2023). The neurobiological effects of mind–body exercise: a systematic review and meta-analysis of neuroimaging studies. Dental Science Reports, 13(1). https://doi.org/10.1038/s41598-023-37309-4
Hosang, L., Mouchlianitis, E., Guérin, S. M. R., & Karageorghis, C. I. (2022). Effects of exercise on electroencephalography-recorded neural oscillations: a systematic review. International Review of Sport and Exercise Psychology, 1–54. https://doi.org/10.1080/1750984x.2022.2103841
Huang, W., Wu, W., Lucas, M. V, Huang, H., Wen, Z., & Li, Y. (2023). Neurofeedback Training With an Electroencephalogram-Based Brain-Computer Interface Enhances Emotion Regulation. IEEE Transactions on Affective Computing, 14, 998–1011. https://doi.org/10.1109/TAFFC.2021.3134183
Izutsu, N., Yanagisawa, T., Fukuma, R., & Kishima, H. (2023). Magnetoencephalographic neurofeedback training decreases β-low-γ phase-amplitude coupling of the motor cortex of healthy adults: a double-blinded randomized crossover feasibility study. Journal of Neural Engineering, 20(3), 36005. https://doi.org/10.1088/1741-2552/acd0d6
Karen, D., Dorian, G., Arnaud, H., & Thibault, G. (2023). High-intensity physical activity enhances cognitive decision processes. In bioRxiv. https://doi.org/10.1101/2023.02.14.528466
Khandekar, P., Shenoy, S., & Sathe, A. (2022). Prefrontal cortex hemodynamic response to acute high intensity intermittent exercise during executive function processing. Journal of General Psychology, 150(3), 295–322. https://doi.org/10.1080/00221309.2022.2048785
Kimura, D., Hosokawa, T., Ujikawa, T., & Ito, T. (2022). Effects of different exercise intensities on prefrontal activity during a dual task. Dental Science Reports, 12(1). https://doi.org/10.1038/s41598-022-17172-5
Ko, Y., Kim, S. M., Kang, K. D., & Han, D. H. (2023). Changes in Functional Connectivity Between Default Mode Network and Attention Network in Response to Changes in Aerobic Exercise Intensity. Psychiatry Investigation, 20(1), 27–34. https://doi.org/10.30773/pi.2022.0245
Lee, E. D., Hong, J. K., Choi, H., & Yoon, I.-Y. (2024). Modest Effects of Neurofeedback-Assisted Meditation Using a Wearable Device on Stress Reduction: A Randomized, Double-Blind, and Controlled Study. Journal of Korean Medical Science, 39. https://doi.org/10.3346/jkms.2024.39.e94
Leger, C., Quirié, A., Méloux, A., Fontanier, E., Chaney, R., Basset, C., Lemaire, S., Garnier, P., & Prigent-Tessier, A. (2024). Impact of Exercise Intensity on Cerebral BDNF Levels: Role of FNDC5/Irisin. International Journal of Molecular Sciences, 25. https://doi.org/10.3390/ijms25021213
Liu, B., Yu, J., Wu, J., Qin, Y., Xiao, W. R., & Ren, Z. (2023). Runners with better cardiorespiratory fitness had higher prefrontal cortex activity during both single and exercise-executive function dual tasks: an fNIRS study. Frontiers in Physiology, 14. https://doi.org/10.3389/fphys.2023.1246741
Lohaus, M., Maurer, A., Upadhyay, N., Daamen, M., Bodensohn, L., Werkhausen, J., Manunzio, C., Manunzio, U., Radbruch, A., Attenberger, U., & Boecker, H. (2024). Differential modulation of resting-state functional connectivity between amygdala and precuneus after acute physical exertion of varying intensity: indications for a role in affective regulation. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2024.1349477
Lu, Y., Bu, F., Wang, F., Liu, L., Zhang, S., Wang, G., & Hu, X. (2023). Recent advances on the molecular mechanisms of exercise-induced improvements of cognitive dysfunction. Translational Neurodegeneration, 12(1). https://doi.org/10.1186/s40035-023-00341-5
Lunina, N. V, & Koryagina, Y. V. (2023). [Impact of neurobiofeedback by beta rhythm of the brain on the functional state of cardiovascular system of athletes with different motor activity]. Voprosy Kurortologii Fizioterapii i Lechebnoĭ Fizicheskoĭ Kultury, 100 2(2), 45–51. https://doi.org/10.17116/kurort202310002145
Mahmood, D., Nisar, H., & Tsai, C. (2024). Exploring the efficacy of neurofeedback training in modulating alpha-frequency band and its effects on functional connectivity and band power. In Expert systems with applications (Vol. 254, p. 124415). https://doi.org/10.1016/j.eswa.2024.124415
Monany, D. R., Lebon, F., & Papaxanthis, C. (2023). Optimizing the Benefits of Mental Practice on Motor Acquisition and Consolidation with Moderate-Intensity Exercise. In Peer community journal (Vol. 3). https://doi.org/10.24072/pcjournal.296
Niu, X., Chi, P., Song, J., Pang, Y., Wu, Q. W. Z., Liu, Y., & Chi, A. (2022). Effects of Sleep Deprivation on Functional Connectivity of Brain Regions after High-Intensity Exercise in Adolescents. Sustainability, 14(23), 16175. https://doi.org/10.3390/su142316175
Olson, R. L., & Cleveland, D. J. (2023). Effects of Low-Intensity Aerobic Exercise on Neurophysiological and Behavioral Correlates of Cognitive Function. Behavioral Sciences, 13(5), 401. https://doi.org/10.3390/bs13050401
Petré, H., Ovendal, A. H., Westblad, N., Siethoff, L. ten, Rosdahl, H., & Psilander, N. (2023). Effect of the Intrasession Exercise Order of Flywheel Resistance and High-Intensity Interval Training on Maximal Strength and Power Performance in Elite Team-Sport Athletes. Journal of Strength and Conditioning Research. https://doi.org/10.1519/JSC.0000000000004556
Presti, S. Lo, Gianelli, C., & Canessa, N. (2023). Cognition, body, and mind: A three‐in‐one coordinate‐based fMRI meta‐analysis on cognitive, physical, and meditative trainings. Human Brain Mapping, 44(9), 3795–3814. https://doi.org/10.1002/hbm.26312
Raji, C., Meysami, S., Hashemi, S., Garg, S., Ahmed, G., Niotis, K., & Merrill, D. A. (2023). Exercise-Related Physical Activity Relates to Brain Volumes in 10,125 Individuals. Journal of Alzheimer’s Disease. https://doi.org/10.3233/jad-230740
Rivas-Campo, Y., Aibar-Almazán, A., Rodríguez-López, C. E., Afanador-Restrepo, D. F., García-Garro, P. A., Castellote-Caballero, Y., Achalandabaso-Ochoa, A., & Hita-Contreras, F. (2023). Enhancing Cognition in Older Adults with Mild Cognitive Impairment through High-Intensity Functional Training: A Single-Blind Randomized Controlled Trial. Stomatology, 12(12), 4049. https://doi.org/10.3390/jcm12124049
Schleh, M. W., Ahn, C., Ryan, B. J., Chugh, O. K., Luker, A. T., Luker, K. E., Gillen, J. B., Ludzki, A. C., Pelt, D. W. Van, Pitchford, L. M., Rode, T., Howton, S. M., Burant, C. F., & Horowitz, J. F. (2023). Both moderate- and high-intensity exercise training increase intramyocellular lipid droplet abundance and modify myocellular distribution in adults with obesity. American Journal of Physiology-Endocrinology and Metabolism. https://doi.org/10.1152/ajpendo.00093.2023
Schmidt, K., Kowalski, A., Schweda, A., Dörrie, N., Skoda, E.-M., Bäuerle, A., & Teufel, M. (2024). Evaluation of a manualised neurofeedback training in psychosomatic-psychotherapeutic outpatient treatment (Neuro-pp-out): study protocol for a clinical mixed-methods pilot study. BMJ Open, 14. https://doi.org/10.1136/bmjopen-2023-079098
Schultz, C. A., & Herbert, J. (2022). Review of the Evidence for Neurofeedback Training for Children and Adolescents Who Have Experienced Traumatic Events. Trauma, Violence, & Abuse, 15248380221134296–15248380221134296. https://doi.org/10.1177/15248380221134295
Stults‐Kolehmainen, M., Conlee, M. N., Morse, A. R., Wegner, S., Hensley, J. P., & Kilpatrick, M. W. (2023). Impact Of Exercise Intensity On Motivation State Before And After Aerobic Exercise. In Medicine and Science in Sports and Exercise (Vol. 55, Issue 9S, pp. 787–788). https://doi.org/10.1249/01.mss.0000987256.01877.66
Tarmizi, F. I. M., & Othman, E. A. (2023). Benefits of Physical Exercise on Working Memory Performance: A Systematic Review of Functional MRI Studies. In Journal of Cognitive Sciences and Human Development (Vol. 9, Issue 2, pp. 101–116). https://doi.org/10.33736/jcshd.5973.2023
Teo, W.-P., Tan, C. X., Goodwill, A. M., Mohammad, S., Ang, Y.-X., & Latella, C. (2023). Brain activation associated with low- and high-intensity concentric versus eccentric isokinetic contractions of the biceps brachii: An fNIRS study. Scandinavian Journal of Medicine & Science in Sports. https://doi.org/10.1111/sms.14499
Tyler, J., Podaras, M., Richardson, B. J., Roeder, N. M., Hammond, N., Hamilton, J., Blum, K., Gold, M. S., Baron, D. A., & Thanos, P. K. (2023). High intensity interval training exercise increases dopamine D2 levels and modulates brain dopamine signaling. Frontiers in Public Health. https://doi.org/10.3389/fpubh.2023.1257629
Wang, K. P., Elbanna, H., & Schack, T. (2023). A new EEG neurofeedback training approach in sports: the effects function-specific instruction of Mu rhythm and visuomotor skill performance. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2023.1273186
Wang, X., Soh, K. G., Deng, N., Liu, X., Zhao, Y., & Akbar, S. (2023). Effects of high-intensity functional training on physical fitness and sport-specific performance among the athletes: A systematic review with meta-analysis. PLOS ONE, 18. https://doi.org/10.1371/journal.pone.0295531
Wang, Y., & Ashokan, K. (2021). Physical Exercise: An Overview of Benefits From Psychological Level to Genetics and Beyond. Frontiers in Physiology, 12, 731858. https://doi.org/10.3389/FPHYS.2021.731858
Weston, M. E., Barker, A. R., Tomlinson, O. W., Coombes, J. S., Bailey, T. G., & Bond, B. (2022). The effect of exercise intensity and cardiorespiratory fitness on the kinetic response of middle cerebral artery blood velocity during exercise in healthy adults. Journal of Applied Physiology, 133(1), 214–222. https://doi.org/10.1152/japplphysiol.00862.2021
Wu, J.-H., Chueh, T. Y., Yu, C.-L., Wang, K. P., Kao, S. C., Gentili, R. J., Hatfield, B. D., & Hung, T. M. (2023). Effect of a single session of sensorimotor rhythm neurofeedback training on the putting performance of professional golfers. Scandinavian Journal of Medicine & Science in Sports. https://doi.org/10.1111/sms.14540
Xu, J., Zhang, Z., Yu, J., Li, G., Cui, J., Qi, H., Zhang, M., Li, M., Yang, H., Wang, H., Min, H.-K., Xu, F., Xu, X., Zhu, C., Xiao, Y., & Zhang, Y. (2024). Functional near-infrared spectroscopy-based neurofeedback training regulates time-on-task effects and enhances sustained cognitive performance. In Cerebral cortex (Vol. 34, Issue 6). https://doi.org/10.1093/cercor/bhae259
Yao, Y., Tang, Y., Tang, Y., Tang, Y., Tang, Y., Tang, Y., Tang, Y., Tang, Y., Tang, Y., Tang, Y., & Tang, Y. (2024). High-intensity interval training ameliorates postnatal immune activation-induced mood disorders through KDM6B-regulated glial activation. In Brain Behavior and Immunity. https://doi.org/10.1016/j.bbi.2024.06.006
Zhu, F., Zhu, X., Bi, X., Kuang, D., Liu, B., Zhou, J., Yang, Y., & Ren, Y. (2023). Comparative effectiveness of various physical exercise interventions on executive functions and related symptoms in children and adolescents with attention deficit hyperactivity disorder: A systematic review and network meta-analysis. Frontiers in Public Health, 11. https://doi.org/10.3389/fpubh.2023.1133727
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Retos

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess