La inmersión en agua fría como método de recuperación eficaz: su impacto en la frecuencia cardíaca y los niveles de lactato después del ejercicio (Cold water immersion as an effective recovery method: its impact on heart rate and lactate levels post exercise)
DOI:
https://doi.org/10.47197/retos.v61.108794Palabras clave:
Estrategia de recuperación, Inmersión en agua fría, LactatoResumen
El objetivo de la investigación. El propósito de esta investigación es examinar el impacto de la técnica de recuperación a través de inmersión en agua fría (CWI) con variaciones en temperaturas y duración de la aplicación. Sección de Material y Métodos. En la investigación, estuvieron involucrados treinta y dos estudiantes que también son atletas. Los participantes fueron divididos en cuatro grupos y sometidos a un entrenamiento físico agudo con una intensidad del 95%. Posteriormente, se les aplicaron tratamientos de recuperación, tales como inmersión en agua fría (CWI) durante y después del ejercicio físico, inmersión en agua fría con una temperatura de 15 grados Celsius (CWI DP 15) y inmersión en agua fría con una temperatura de 15 grados Celsius después de la práctica. El grupo de estudio se dividió en tres subgrupos: el grupo de inmersión en agua fría (CWI P 15), el grupo de inmersión en agua caliente con temperatura de 100 grados Celsius después de la práctica física (CWI P 10) y el grupo de descanso estático (SR). En el análisis de datos, se emplea un enfoque descriptivo, la prueba t de muestras pareadas y el análisis de varianza (ANOVA) bidireccional para examinar diferentes aspectos de los datos. Todos los datos presentaban una distribución normal (p ≥ 0,05) y homogeneidad (p ≤ 0,05). Los resultados del estudio de la frecuencia cardíaca indicaron que no existe una disparidad significativa entre el grupo CWI DP, CWI P 15 y CWI P 10 en comparación con la etapa de ejercicio del grupo de control actual. Existe una diferencia en la concentración de lactato entre el grupo CWI DP 15 y un grupo control en la fase Inmediatamente. Por otro lado, el lactato también muestra variaciones significativas en ambos grupos. Tras el ejercicio, se observó un valor de p de 0.021. Se encontró una diferencia significativa en la concentración de lactato entre los grupos CWI DP15, CWI P15 y CWI P 10 en comparación con el grupo de control, con un valor de p de 0.001 a los 10 minutos post-ejercicio. Por otro lado, a los 120 minutos post-ejercicio se identificó una diferencia en la concentración de lactato entre el grupo CWI P 15 y el grupo de control. En la fase de 24 horas posterior al ejercicio, se observa una diferencia en la concentración de lactato entre el grupo tratado con inmersión en agua fría (CWI DP 15) y el grupo de control, con valores de p de 0,001 y 0,0024 respectivamente. La inmersión en agua fría (CWI) ha demostrado acelerar de manera significativa la recuperación de la frecuencia cardíaca (HRR), disminuir los niveles de lactato en sangre y mejorar el rendimiento de los atletas. Estos resultados sugieren que la CWI puede ser beneficiosa en los protocolos de recuperación. La inmersión en agua fría es una estrategia de recuperación que puede ayudar a reducir los niveles de lactato en el cuerpo.
Palabras clave: Estrategia de recuperación, Inmersión en agua fría, Lactato
Abstract. The study’s purpose. This study aims to analyze the effect of the recovery method using cold water immersion (CWI) with different temperatures and administration times. Material and Methods. Thirty-two student-athletes participated in this study. They were divided into four groups, carried out acute physical training with an intensity of 95%, and were given recovery treatments such as CWI during and after physical exercise CWI with temperature 150 Celsius (CWI DP 15), CWI with temperature 150 Celsius after practice physical (CWI P 15), CWI with temperature 100 Celsius after practice physical (CWI P 10), and the Static Rest (SR) group. Analysis descriptive, paired samples t-test, and two-way ANOVA direction used in data analysis. This is that all data were normally distributed (p ≥ 0.05) and homogeneous (p ≤ 0.05). The results of the heart rate analysis found that no There is a significant difference between group CWI DP, CWI P 15, and CWI P 10 with the current control group Exercise phase. Meanwhile lactate, there is a difference in concentration of lactate in the CWI DP 15 group against a control group in phase Immediately Post-exercise with a p-value of 0.021; the 10min post-exercise phase is difference significant concentration lactate groups CWI DP15, CWI P15, and CWI P 10 against control group with p- value 0.001, in the 120min post-exercise phase there is difference lactate group CWI P 15 against control group with The p-value is 0.001, in the 24 hours post-exercise phase there is difference concentration lactate CWI DP 15 group against control with p-value 0.0024. Cold Water Immersion (CWI) has been shown to significantly accelerate heart rate recovery (HRR), reduce blood lactate levels, and improve athlete performance, indicating that it may be beneficial in recovery protocols.
Keywords: Recovery Strategy, Cold Water Immersion, Lactate
Citas
Allan, R. (2017). Postexercise cold water immersion modulates skeletal muscle PGC-1α mRNA expression in immersed and nonimmersed limbs: Evidence of systemic regulation. Journal of Applied Physiology, 123(2), 451–459. https://doi.org/10.1152/japplphysiol.00096.2017
Amir, N. H., Hashim, H. A., & Saha, S. (2017). The effect of single bout of 15 minutes of 15-degree celsius cold water immersion on delayed-onset muscle soreness indicators. IFMBE Proceedings, 58, 45–51. https://doi.org/10.1007/978-981-10-3737-5_10
Barnett, A. (2006). Using recovery modalities between training sessions in elite athletes: does it help? Sports Medicine (Auckland, N.Z.), 36(9), 781–796. https://doi.org/10.2165/00007256-200636090-00005
Bastos, F. N., Vanderlei, L. C. M., Nakamura, F. Y., Bertollo, M., Godoy, M. F., Hoshi, R. A., Junior, J. N., & Pastre, C. M. (2012). Effects of cold water immersion and active recovery on post-exercise heart rate variability. International Journal of Sports Medicine, 33(11), 873–879. https://doi.org/10.1055/s-0032-1301905
Bieuzen, F., Bleakley, C. M., & Costello, J. T. (2013). Contrast Water Therapy and Exercise Induced Muscle Damage: A Systematic Review and Meta-Analysis. PLoS ONE, 8(4), e62356. https://doi.org/10.1371/journal.pone.0062356
Bleakley, C. M., & Davison, G. W. (2010). What is the biochemical and physiological rationale for using cold-water immersion in sports recovery? A systematic review. British Journal of Sports Medicine, 44(3), 179–187. https://doi.org/10.1136/bjsm.2009.065565
Broatch, J. R., Petersen, A., & Bishop, D. J. (2014). Postexercise Cold Water Immersion Benefits Are Not Greater than the Placebo Effect. Medicine & Science in Sports & Exercise, 46(11), 2139–2147. https://doi.org/10.1249/MSS.0000000000000348
Brophy-Williams, N., Landers, G., & Wallman, K. (2011). Effect of immediate and delayed cold water immersion after a high intensity exercise session on subsequent run performance. Journal of Sports Science & Medicine, 10(4), 665–670.
Daanen, H. A. M., Lamberts, R. P., Kallen, V. L., Jin, A., & Van Meeteren, N. L. U. (2012). A systematic review on heart-rate recovery to monitor changes in training status in athletes. International Journal of Sports Physiology and Performance, 7(3), 251–260. https://doi.org/10.1123/IJSPP.7.3.251
Dellal, A., Casamichana, D., Castellano, J., Haddad, M., Moalla, W., & Chamari, K. (2015). Cardiac parasympathetic reactivation in elite soccer players during different types of traditional high-intensity training exercise modes and specific tests: Interests and limits. Asian Journal of Sports Medicine, 6(4), 1–10. https://doi.org/10.5812/asjsm.25723
Eigendorf, J., May, M., Friedrich, J., Engeli, S., Maassen, N., Gros, G., & Meissner, J. D. (2018). High intensity high volume interval training improves endurance performance and induces a nearly complete slow-to-fast fiber transformation on the mRNA level. Frontiers in Physiology, 9(MAY). https://doi.org/10.3389/fphys.2018.00601
Gill, N. D. (2006). Effectiveness of post-match recovery strategies in rugby players. British Journal of Sports Medicine, 40(3), 260–263. https://doi.org/10.1136/bjsm.2005.022483
Gocentas, A., Landõr, A., & Kriščiūnas, A. (2018). Heart Rate Recovery Changes during Competition Period in High-Level Basketball Players. Baltic Journal of Sport and Health Sciences, 1(80), 11–16. https://doi.org/10.33607/bjshs.v1i80.334
Halson, S. L. (2014). Monitoring Training Load to Understand Fatigue in Athletes. Sport Med, 44(2), 139–147. https://doi.org/10.1007/s40279-014-0253-z
Iacovino, L. G., Rossi, M. L., Stefano, G. Di, Rossi, V., Binda, C., Brigotti, M., Tomaselli, F., Pasti, A. Pietro, Piaz, F. D., Cerini, S., & Hochkoeppler, A. (2022). Allosteric transitions of rabbit skeletal muscle lactate dehydrogenase induced by pH-dependent dissociation of the tetrameric enzyme. Biochimie, 199, 23–35. https://api.semanticscholar.org/CorpusID:248043845
Kellmann, M., Bertollo, M., Bosquet, L., Brink, M., Coutts, A. J., Duffield, R., Erlacher, D., Halson, S. L., Hecksteden, A., Heidari, J., Kallus, K. W., Meeusen, R., Mujika, I., Robazza, C., Skorski, S., Venter, R., & Beckmann, J. (2018). Recovery and Performance in Sport: Consensus Statement. International Journal of Sports Physiology and Performance, 13(2), 240–245. https://doi.org/10.1123/ijspp.2017-0759
Lee, C. M., & Mendoza, A. (2012). Dissociation of heart rate variability and heart rate recovery in well-trained athletes. European Journal of Applied Physiology, 112(7), 2757–2766. https://doi.org/10.1007/s00421-011-2258-8
Lee, S., Choi, Y., Jeong, E., Park, J., Kim, J., Tanaka, M., & Choi, J. (2023). Physiological significance of elevated levels of lactate by exercise training in the brain and body. Journal of Bioscience and Bioengineering, 135(3), 167–175. https://doi.org/10.1016/j.jbiosc.2022.12.001
Leeder, J., Gissane, C., Van Someren, K., Gregson, W., & Howatson, G. (2012). Cold water immersion and recovery from strenuous exercise: A meta-analysis. British Journal of Sports Medicine, 46(4), 233–240. https://doi.org/10.1136/bjsports-2011-090061
Manojlović, V., & Erčulj, F. (2019). Using blood lactate concentration to predict muscle damage and jump performance response to maximal stretch-shortening cycle exercise. The Journal of Sports Medicine and Physical Fitness, 59(4), 581–586. https://doi.org/10.23736/S0022-4707.18.08346-9
Martínez-Lagunas, V., Niessen, M., & Hartmann, U. (2014). Women’s football: Player characteristics and demands of the game. Journal of Sport and Health Science, 3(4), 258–272. https://doi.org/10.1016/j.jshs.2014.10.001
Munandar, R. A., Setijono, H., & Widyah Kusnanik, N. (2021). The Effect of Tabata Training and High Intensity Interval Training toward The Increasing of Strength, and Speed. International Journal of Multicultural and Multireligious Understanding, 8(10), 80. https://doi.org/10.18415/ijmmu.v8i10.3007
Nixdorf, R., Nixdorf, I., & Beckmann, J. (2018). Stress, Underrecovery, and Health Problems in Athletes (pp. 119–131). https://doi.org/10.4324/9781315268149-9
Paquette, M., Le Blanc, O., Lucas, S. J. E., Thibault, G., Bailey, D. M., & Brassard, P. (2017). Effects of submaximal and supramaximal interval training on determinants of endurance performance in endurance athletes. Scandinavian Journal of Medicine & Science in Sports, 27(3), 318–326. https://doi.org/10.1111/sms.12660
Parouty, J., Al Haddad, H., Quod, M., Leprêtre, P. M., Ahmaidi, S., & Buchheit, M. (2010). Effect of cold water immersion on 100-m sprint performance in well-trained swimmers. European Journal of Applied Physiology, 109(3), 483–490. https://doi.org/10.1007/s00421-010-1381-2
Peiffer, J. J., Abbiss, C. R., Watson, G., Nosaka, K., & Laursen, P. B. (2009). Effect of cold-water immersion duration on body temperature and muscle function. Journal of Sports Sciences, 27(10), 987–993. https://doi.org/10.1080/02640410903207424
Poignard, M., Guilhem, G., Jubeau, M., Martin, E., Giol, T., Montalvan, B., & Bieuzen, F. (2023). Cold-water immersion and whole-body cryotherapy attenuate muscle soreness during 3 days of match-like tennis protocol. European Journal of Applied Physiology, 123(9), 1895–1909. https://doi.org/10.1007/s00421-023-05190-8
Pournot, H., Bieuzen, F., Duffield, R., Lepretre, P.-M., Cozzolino, C., & Hausswirth, C. (2011). Short term effects of various water immersions on recovery from exhaustive intermittent exercise. European Journal of Applied Physiology, 111(7), 1287–1295. https://doi.org/10.1007/s00421-010-1754-6
Putrov, S., Omelchuk, O., Milkina, O., & Napalkova, T. (2021). Features of physical training of students based on the use of the method of interval training according to the “Tabata” system. Scientific Journal of National Pedagogical Dragomanov University. Series 15. Scientific and Pedagogical Problems of Physical Culture (Physical Culture and Sports), 11(11(143)), 119–124. https://doi.org/10.31392/npu-nc.series15.2021.11(143).25
Roberts, L. A., Nosaka, K., Coombes, J. S., & Peake, J. M. (2014). Cold water immersion enhances recovery of submaximal muscle function after resistance exercise. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 307(8), R998–R1008. https://doi.org/10.1152/ajpregu.00180.2014
Sánchez-Ureña, B., Martínez-Guardado, I., Crespo, C., Timón, R., Calleja-González, J., Ibañez, S. J., & Olcina, G. (2017). The use of continuous vs. intermittent cold water immersion as a recovery method in basketball players after training: A randomized controlled trial. The Physician and Sportsmedicine, 00913847.2017.1292832. https://doi.org/10.1080/00913847.2017.1292832
Sánchez–Ureña, B. (2017). The use of continuous vs. intermittent cold water immersion as a recovery method in basketball players after training: a randomized controlled trial. Physician and Sportsmedicine, 45(2), 134–139. https://doi.org/10.1080/00913847.2017.1292832
Sousa, C. A., Zourdos, M. C., Storey, A. G., & Helms, E. R. (2024). The Importance of Recovery in Resistance Training Microcycle Construction. Journal of Human Kinetics , 91, 205–223. https://doi.org/10.5114/jhk/186659
Stanley, J., Peake, J. M., Coombes, J. S., & Buchheit, M. (2014). Central and peripheral adjustments during high-intensity exercise following cold water immersion. European Journal of Applied Physiology, 114(1), 147–163. https://doi.org/10.1007/s00421-013-2755-z
Tabben, M. (2018). Cold water immersion enhanced athletes’ wellness and 10-m short sprint performance 24-h after a simulated mixed martial arts combat. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.01542
Takei, N., Takahashi, K., Kakinoki, K., & Hatta, H. (2018). Relationships between rate of increase in post-exercise blood lactate concentration and performance of short-term high-intensity exercise in track athletes. The Journal of Physical Fitness and Sports Medicine, 7(5), 253–259. https://doi.org/10.7600/jpfsm.7.253
Terrados, N., Mielgo-Ayuso, J., Delextrat, A., Ostojic, S. M., & Calleja-Gonzalez, J. (2019). Dietetic-nutritional, physical and physiological recovery methods post-competition in team sports. The Journal of Sports Medicine and Physical Fitness, 59(3), 415–428. https://doi.org/10.23736/S0022-4707.18.08169-0
Tripp, T. R., Caswell, A. M., Aboodarda, S. J., & MacInnis, M. J. (2024). The Effect of Duration on Performance and Perceived Fatigability During Acute High-Intensity Interval Exercise in Young, Healthy Males and Females. Scandinavian Journal of Medicine & Science in Sports, 34(7), e14692. https://doi.org/10.1111/sms.14692
Vaile, J., O’Hagan, C., Stefanovic, B., Walker, M., Gill, N., & Askew, C. D. (2011). Effect of cold water immersion on repeated cycling performance and limb blood flow. British Journal of Sports Medicine, 45(10), 825–829. https://doi.org/10.1136/bjsm.2009.067272
Vaile, Joanna, Halson, S., Gill, N., & Dawson, B. (2008a). Effect of cold water immersion on repeat cycling performance and thermoregulation in the heat. Journal of Sports Sciences, 26(5), 431–440. https://doi.org/10.1080/02640410701567425
Vaile, Joanna, Halson, S., Gill, N., & Dawson, B. (2008b). Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. European Journal of Applied Physiology, 102(4), 447–455. https://doi.org/10.1007/s00421-007-0605-6
Watson, A. M., Brickson, S. L., Prawda, E. R., & Sanfilippo, J. L. (2017). Short-Term Heart Rate Recovery Is Related To Aerobic Fitness In Elite Intermittent Sport Athletes. Journal of Strength and Conditioning Research, 31(4), 1055–1061.
Weenink, R. P., & Wingelaar, T. T. (2021). The Circulatory Effects of Increased Hydrostatic Pressure Due to Immersion and Submersion. Frontiers in Physiology, 12(July), 10–13. https://doi.org/10.3389/fphys.2021.699493
White, G. E., Rhind, S. G., & Wells, G. D. (2014). The effect of various cold-water immersion protocols on exercise-induced inflammatory response and functional recovery from high-intensity sprint exercise. European Journal of Applied Physiology, 114(11), 2353–2367. https://doi.org/10.1007/s00421-014-2954-2
Wilcock, I. M., Cronin, J. B., & Hing, W. A. (2006). Physiological response to water immersion: A method for sport recovery? Sports Medicine, 36(9), 747–765. https://doi.org/10.2165/00007256-200636090-00003
Xiao, F., Kabachkova, A. V., Jiao, L., Zhao, H., & Kapilevich, L. V. (2023). Effects of cold water immersion after exercise on fatigue recovery and exercise performance--meta analysis. Frontiers in Physiology, 14(January), 1–15. https://doi.org/10.3389/fphys.2023.1006512
Yang, Y., Chen, S. C., Yang, W. T., Kuo, J. T., & Chien, K. Y. (2019). Cold water immersion recovery strategy increases blood pressure levels after high-intensity intermittent exercise. Journal of Sports Medicine and Physical Fitness, 59(11), 1925–1933. https://doi.org/10.23736/S0022-4707.19.09771-8
Yankouskaya, A., Williamson, R., Stacey, C., Totman, J. J., & Massey, H. (2023). Short-Term Head-Out Whole-Body Cold-Water Immersion Facilitates Positive Affect and Increases Interaction between Large-Scale Brain Networks. Biology, 12(2). https://doi.org/10.3390/biology12020211.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Retos

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess