El entrenamiento de los músculos inspiratorios durante 3 semanas aumenta la presión inspiratoria, pero no el rendimiento en jóvenes nadadores de élite chilenos (Inspiratory muscle training for 3 weeks increases maximal inspiratory pressure but not the performance in young Chilean elite swimmers)

Autores/as

  • Pablo Gonzalo Troncoso Galleguillos Grupo de Investigación del Movimiento Humano (GIMH). Carrera de Kinesiología, Universidad Autónoma de Chile, Chile. https://orcid.org/0000-0003-4320-0283
  • Oscar Florencio Araneda Laboratorio Integrativo de Biomecánica y Fisiología del esfuerzo (LIBFE), Escuela de Kinesiología, Facultad de Medicina. Universidad de los Andes, Santiago, Chile. https://orcid.org/0000-0002-9501-3159
  • José Naranjo-Orellana Departamento de Deporte y Computación, Universidad Pablo de Olavide, Sevilla, España.

DOI:

https://doi.org/10.47197/retos.v60.106715

Palabras clave:

entrenamiento músculos inspiratorios, nadadores jóvenes, rendimiento físico, metabolismo, consumo de oxígeno

Resumen

El entrenamiento muscular inspiratorio (IMT) ha mostrado algunos beneficios sobre el rendimiento en deportistas dependiendo de la intensidad, duración y adherencia al entrenamiento. Investigamos el efecto de un protocolo reducido en extensión y de alta intensidad. 14 nadadores jóvenes de nivel regional Chilenos de ambos sexos fueron distribuidos aleatoriamente en un grupo control (G-CON) (2M/5H) y uno que realizó entrenamiento de la musculatura inspiratoria (G-IMT) (2M/5H). Ambos grupos continuaron con sus entrenamientos de nado de modo habitual, el G-IMT sumó un tratamiento de 36 sesiones, distribuidas en 2 sesiones al día de 30 respiraciones al 70% de la Presión Inspiratoria Máxima (PIMax) usando la válvula Powerbreathe® durante tres semanas. Finalizada la intervención, la PIMax mostró aumentos en el G-IMT (p=0.0115, η2=0.4254; tamaño del efecto grande), sin cambios morfológicos diafragmáticos, ni mejoras en la espirometría, ni en el test cardiopulmonar en laboratorio, ni en las variables de desempeño físico posterior a la prueba de 200 metros crol. En conclusión, el IMT en jóvenes deportistas durante tres semanas mejoró la fuerza muscular inspiratoria, pero no modificó la morfología del diafragma ni el rendimiento físico, medido tanto en laboratorio como en una prueba de campo.

Palabras clave: entrenamiento músculos inspiratorios, nadadores jóvenes, rendimiento físico, metabolismo, consumo de oxígeno.

Abstract. Inspiratory muscle training (IMT) has shown some benefits on performance in athletes depending on intensity, duration and adherence to training. We investigated the effect of a reduced extension and high intensity protocol. 14 young Chilean regional level swimmers of both sexes were randomly distributed in a control group (G-CON) (2F/5M) and one group that performed inspiratory muscle training (G-IMT) (2F/5M). Both groups continued with their swimming training as usual, the G-IMT group added a treatment of 36 sessions, distributed in 2 sessions per day of 30 breaths at 70% of the maximum inspiratory pressure (MIP) using the Powerbreathe® valve for three weeks. At the end of the intervention, MIP showed increases in G-IMT (p=0.0115, η2=0.4254; large effect size), without diaphragmatic morphological changes, nor improvements in spirometry, nor in the cardiopulmonary test in the laboratory, nor in the physical performance variables after the 200-meter crawl test. Conclusion, IMT in young athletes for three weeks improved inspiratory muscle strength, but did not modify diaphragm morphology or physical performance, measured both in the laboratory and in a field test.

Keywords: inspiratory muscle training, young swimmers, physical performance, metabolism, oxygen consumption.

Citas

Amann M. (2012). Pulmonary system limitations to endurance exercise performance in humans. Experimental physi-ology, 97(3), 311–318. https://doi.org/10.1113/expphysiol.2011.058800

American Thoracic Society/European Respiratory Society (2002). ATS/ERS Statement on respiratory muscle testing. American journal of respiratory and critical care medicine, 166(4), 518–624. https://doi.org/10.1164/rccm.166.4.518

Astinchap, A., Behpour, N., & Tadibi, V. (2015). The Effect of 6 Weeks of Inspiratory Muscle Training (IMT) on Swimming Speed. Sport Physiology & Management Investigations, 7(1), 51-62.

Bailey, S. J., Romer, L. M., Kelly, J., Wilkerson, D. P., DiMenna, F. J., & Jones, A. M. (2010). Inspiratory muscle training enhances pulmonary O(2) uptake kinetics and high-intensity exercise tolerance in humans. Journal of ap-plied physiology (Bethesda, Md.: 1985), 109(2), 457–468. https://doi.org/10.1152/japplphysiol.00077.2010

Beaver, W. L., Wasserman, K., & Whipp, B. J. (1986). A new method for detecting anaerobic threshold by gas ex-change. Journal of applied physiology (Bethesda, Md.: 1985), 60(6), 2020–2027.

Brown, P. I., Johnson, M. A., & Sharpe, G. R. (2014). Determinants of inspiratory muscle strength in healthy humans. Respiratory physiology & neurobiology, 196, 50–55. https://doi.org/10.1016/j.resp.2014.02.014

Brown, S., & Kilding, A. E. (2011). Exercise-induced inspiratory muscle fatigue during swimming: the effect of race distance. Journal of strength and conditioning research, 25(5), 1204–1209. https://doi.org/10.1519/JSC.0b013e3181d67ab8

Burtch, A. R., Ogle, B. T., Sims, P. A., Harms, C. A., Symons, T. B., Folz, R. J., & Zavorsky, G. S. (2017). Con-trolled Frequency Breathing Reduces Inspiratory Muscle Fatigue. Journal of strength and conditioning research, 31(5), 1273–1281. https://doi.org/10.1519/JSC.0000000000001589

Caine, and McConnell, (2000), Development and evaluation of a pressure threshold inspiratory muscle trainer for use in the context of sports performance. Sports Engineering, 3: 149-159. https://doi.org/10.1046/j.1460-2687.2000.00047.x

Callegaro, C. C., Ribeiro, J. P., Tan, C. O., & Taylor, J. A. (2011). Attenuated inspiratory muscle metaboreflex in endurance-trained individuals. Respiratory physiology & neurobiology, 177(1), 24–29. https://doi.org/10.1016/j.resp.2011.03.001

Calvo-Lobo, C., Almazán-Polo, J., Becerro-de-Bengoa-Vallejo, R., Losa-Iglesias, M. E., Palomo-López, P., Rodrí-guez-Sanz, D., & López-López, D. (2019). Ultrasonography comparison of diaphragm thickness and excursion be-tween athletes with and without lumbopelvic pain. Physical therapy in sport: official journal of the Association of Chartered Physiotherapists in Sports Medicine, 37, 128–137. https://doi.org/10.1016/j.ptsp.2019.03.015

Castilho, T., Itaborahy, B. D. H., Hoepers, A., Brito, J. N. de, Almeida, A. C. D. S., & Schivinski, C. I. S. (2020). Ef-fects of inspiratory muscle training and breathing exercises in children with asthma: a systematic review. Revista Brasileira de Crescimento e Desenvolvimento Humano, 30(2), 291–300. https://doi.org/10.7322/jhgd.v30.10381

Cavalcante Silva, R.L., Hall, E., & Maior, A.S. (2019). Inspiratory muscle training improves performance of a repeat-ed sprints ability test in professional soccer players, Journal of Bodywork & Movement Therapies. https://doi.org/10.1016/j.jbmt.2019.01.016

Clanton, T. L., Dixon, G. F., Drake, J., & Gadek, J. E. (1987). Effects of swim training on lung volumes and inspirato-ry muscle conditioning. Journal of applied physiology (Bethesda, Md.: 1985), 62(1), 39–46. https://doi.org/10.1152/jappl.1987.62.1.39

Contreras I., Vidal F., Caussade S., Montalvo D., Pineda N., Bertrand P., & Holmgren N. (2008). Valores normales de presión inspiratoria y presión espiratoria máxima en niños y adolescentes chilenos sanos. Neumología Pediátrica, 3(1):80. http://www.neumologia-pediatrica.cl

Cunha M., Mendes F., Paciência I., Rodolfo A., Carneiro-Leão L., Rama T., Rufo J., Delgado L., & Moreira A. (2019). The effect of inspiratory muscle training on swimming performance, inspiratory muscle strength, lung function, and perceived breathlessness in elite swimmers: a randomized controlled trial. Porto Biomed. J. 4:6(e49). http://dx.doi.org/10.1097/j.pbj.0000000000000049.

Edwards A. M. (2013). Respiratory muscle training extends exercise tolerance without concomitant change to peak oxygen uptake: physiological, performance and perceptual responses derived from the same incremental exercise test. Respirology (Carlton, Vic.), 18(6), 1022–1027. https://doi.org/10.1111/resp.12100

Enright, S. J., Unnithan, V. B., Heward, C., Withnall, L., & Davies, D. H. (2006). Effect of high-intensity inspiratory muscle training on lung volumes, diaphragm thickness, and exercise capacity in subjects who are healthy. Physical therapy, 86(3), 345–354.

Enright, S. J., & Unnithan, V. B. (2011). Effect of inspiratory muscle training intensities on pulmonary function and work capacity in people who are healthy: a randomized controlled trial. Physical therapy, 91(6), 894–905. https://doi.org/10.2522/ptj.20090413

Enríquez-Enríquez, D., Mecina-Zapata, C., Riveros-Cárcamo, H., Jerez-Mayorga, D., Ramírez-Campillo, R., Chiro-sa-Ríos, L. J., & Guede-Rojas, F. (2023). Estrategias de calentamiento y rendimiento contrarreloj en nadadores. Revisión rápida de la literatura (Warm-up strategies and time trial performance in swimmers. Rapid review of the literature). Retos, 47, 238–248. https://doi.org/10.47197/retos.v47.92860

Fernández-Lázaro, D., Gallego-Gallego, D., Corchete, L.A., Fernández Zoppino, D., González-Bernal, J.J.; García Gómez, B.; & Mielgo-Ayuso, J. (2021). Inspiratory Muscle Training Program Using the PowerBreath®: Does It Have Ergogenic Potential for Respiratory and/or Athletic Performance? A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health, 18, 6703. https://doi.org/10.3390/ijerph18136703

Ghannadi, S., Noormohammadpour, P., Mazaheri, R., Sahraian, M. A., Mansournia, M. A., Pourgharib Shahi, M. H., Salmasi Fard, A. H., & Abolhasani, M. (2022). Effect of eight weeks respiratory muscle training on respiratory ca-pacity, functional capacity and quality of life on subjects with mild to moderate relapsing-remitting multiple sclero-sis: A single-blinded randomized controlled trial. Multiple sclerosis and related disorders, 68, 104208. https://doi.org/10.1016/j.msard.2022.104208

Gosselink, R., De Vos, J., van den Heuvel, S. P., Segers, J., Decramer, M., & Kwakkel, G. (2011). Impact of inspira-tory muscle training in patients with COPD: what is the evidence?. The European respiratory journal, 37(2), 416–425. https://doi.org/10.1183/09031936.00031810

Griffiths, L. A., & McConnell, A. K. (2007). The influence of inspiratory and expiratory muscle training upon rowing performance. European journal of applied physiology, 99(5), 457–466. https://doi.org/10.1007/s00421-006-0367-6

Habedank, D., Reindl, I., Vietzke, G., Bauer, U., Sperfeld, A., Gläser, S., Wernecke, K. D., & Kleber, F. X. (1998). Ventilatory efficiency and exercise tolerance in 101 healthy volunteers. European journal of applied physiology and oc-cupational physiology, 77(5), 421–426. https://doi.org/10.1007/s004210050354

HajGhanbari, B., Yamabayashi, C., Buna, T. R., Coelho, J. D., Freedman, K. D., Morton, T. A., Palmer, S. A., Toy, M. A., Walsh, C., Sheel, A. W., & Reid, W. D. (2013). Effects of respiratory muscle training on performance in athletes: a systematic review with meta-analyses. Journal of strength and conditioning research, 27(6), 1643–1663. https://doi.org/10.1519/JSC.0b013e318269f73f

Hill J. M. (2000). Discharge of group IV phrenic afferent fibers increases during diaphragmatic fatigue. Brain research, 856(1-2), 240–244. https://doi.org/10.1016/s0006-8993(99)02366-5

Hill, K., & Eastwood, P. (2011). Effects of loading on upper airway and respiratory pump muscle motoneurons. Res-piratory physiology & neurobiology, 179(1), 64–70. https://doi.org/10.1016/j.resp.2011.04.001

Jakovljevic, D. G., & McConnell, A. K. (2009). Influence of different breathing frequencies on the severity of inspira-tory muscle fatigue induced by high-intensity front crawl swimming. Journal of strength and conditioning research, 23(4), 1169–1174. https://doi.org/10.1519/JSC.0b013e318199d707

Johnson, M. A., Mills, D. E., Brown, D. M., Bayfield, K. J., Gonzalez, J. T., & Sharpe, G. R. (2012). Inspiratory loading intensity does not influence lactate clearance during recovery. Medicine and science in sports and exer-cise, 44(5), 863–871. https://doi.org/10.1249/MSS.0b013e31824079d0

Kapus, J. (2013). Effects of inspiratory muscle training on inspiratory muscle strength and sprint swimming perfor-mance in young female and male swimmers. Kinesiologia Slovenica, 19(1), 53–61.

Karsten, M., Ribeiro, G.S., Esquivel, M.S., & Matte, D.L. (2018). The effects of inspiratory muscle training with linear workload devices on the sports performance and cardiopulmonary function of athletes: A systematic review and meta-analysis, Physical Therapy in Sports. https://doi.org/10.1016/j.ptsp.2018.09.004.

Kilding, A. E., Brown, S., & McConnell, A. K. (2010). Inspiratory muscle training improves 100 and 200 m swimming performance. European journal of applied physiology, 108(3), 505–511. https://doi.org/10.1007/s00421-009-1228-x

Klusiewicz, A., Borkowski, L., Zdanowicz, R., Boros, P., & Wesołowski, S. (2008). The inspiratory muscle training in elite rowers. The Journal of sports medicine and physical fitness, 48(3), 279–284.

Lemaitre, F., Coquart, J. B., Chavallard, F., Castres, I., Mucci, P., Costalat, G., & Chollet, D. (2013). Effect of addi-tional respiratory muscle endurance training in young well-trained swimmers. Journal of sports science & medi-cine, 12(4), 630–638.

Lomax, M. E., & McConnell, A. K. (2003). Inspiratory muscle fatigue in swimmers after a single 200 m swim. Journal of sports sciences, 21(8), 659–664. https://doi.org/10.1080/0264041031000101999

Lomax, Mitch. (2012). The Effect of Three Recovery Protocols on Blood Lactate Clearance After Race-Paced Swim-ming. Journal of Strength and Conditioning Research 26(10): p 2771-2776 DOI: 10.1519/JSC.0b013e318241ded7

Lomax, M, Thomaidis, S, Iggleden, C, Toubekis, A, Tiligadas, G, Oliveira, R, & Costa, A. (2013). The impact of swimming speed on respiratory muscle fatigue during front crawl swimming: A role for critical velocity? Int J Swimming Kinetics 2: 3–12.

Lomax, M., Kapus, J., Brown, P. I., & Faghy, M. (2019). Impact of Weekly Swimming Training Distance on the Ergo-genicity of Inspiratory Muscle Training in Well-Trained Youth Swimmers. Journal of strength and conditioning re-search, 33(8), 2185–2193. https://doi.org/10.1519/JSC.0000000000002375

Lorca-Santiago J., Jiménez S., Pareja-Galeano H., & Lorenzo A. (2020). Inspiratory Muscle Training in Intermittent Sports Modalities: A Systematic Review Int. J. Environ. Res. Public Health, 17, 4448. doi:10.3390/ijerph17124448

Mazuera-Quiceno, C. A., Dávila-Grizales, A., Isáziga-Flórez, J. C., Cardona-Zúñiga, N., & Hidalgo-Troya, A. (2023). Efectos de dos modelos de periodización en la curva de lactato y velocidad de nado en nadadores (Effects of two periodization models on the lactate curve and swimming speed in swimmers). Retos, 50, 262–269. https://doi.org/10.47197/retos.v50.96257

McConnell, A. K., & Griffiths, L. A. (2010). Acute cardiorespiratory responses to inspiratory pressure threshold load-ing. Medicine and science in sports and exercise, 42(9), 1696–1703. https://doi.org/10.1249/MSS.0b013e3181d435cf

Mickleborough, T. D., Stager, J. M., Chatham, K., Lindley, M. R., & Ionescu, A. A. (2008). Pulmonary adaptations to swim and inspiratory muscle training. European journal of applied physiology, 103(6), 635–646. https://doi.org/10.1007/s00421-008-0759-x

Naranjo-Orellana, J., & Santalla, A. (2020). Long-Term Combined Training in Idiopathic Pulmonary Fibrosis: A Case Study. International Journal of Environmental Research and Public Health, 17(14), 5091. MDPI AG. Retrieved from http://dx.doi.org/10.3390/ijerph17145091.

Nepomuceno Jr BRV, Gómez TB, & Gomes Neto M. (2016). Use of Powerbreathe® in inspiratory muscle training for athletes: systematic review. Fisioter. Mov., Curitiba, v. 29, n. 4, p. 821-830. DOI: http://dx.doi.org/10.1590/1980-5918.029.004.AO19.

Nunes Júnior, A.D.O.; Donzeli, M.A.; Shimano, S.G.N.; de Oliveira, N.M.L.; Ruas, G.; & Bertoncello, D. (2018). Effects of High-Intensity Inspiratory Muscle Training in Rugby Players. Rev. Bras. Med. Do Esporte, 24, 216–219. https://doi.org/10.1590/1517-869220182403166216

Ohya, T., Kusanagi, K., Koizumi, J., Ando, R., Katayama, K., & Suzuki, Y. (2022). Effect of Moderate- or High-Intensity Inspiratory Muscle Strength Training on Maximal Inspiratory Mouth Pressure and Swimming Perfor-mance in Highly Trained Competitive Swimmers. International journal of sports physiology and performance, 17(3), 343–349. https://doi.org/10.1123/ijspp.2021-0119

Okrzymowska, P., Kurzaj, M., Seidel, W., & Rożek-Piechura, K. (2019). Eight Weeks of Inspiratory Muscle Training Improves Pulmonary Function in Disabled Swimmers-A Randomized Trial. International journal of environmental research and public health, 16(10), 1747. https://doi.org/10.3390/ijerph16101747

Romer, L. M., & McConnell, A. K. (2004). Inter-test reliability for non-invasive measures of respiratory muscle func-tion in healthy humans. European journal of applied physiology, 91(2-3), 167–176. https://doi.org/10.1007/s00421-003-0984-2

Salazar-Martínez E., Gatterer H., Burtscher M., Naranjo J., & Santalla A. (2017). Influence of Inspiratory Muscle Training on Ventilatory Efficiency and Cycling Performance in Normoxia and Hypoxia. Front. Physiol, 8:133. doi: 10.3389/fphys.2017.00133

Santana, P. V., Cardenas, L. Z., Albuquerque, A. L. P., Carvalho, C. R. R., & Caruso, P. (2020). Diaphragmatic ul-trasound: a review of its methodological aspects and clinical uses. Jornal brasileiro de pneumologia: publicacao oficial da Sociedade Brasileira de Pneumologia e Tisilogia, 46(6), e20200064. https://doi.org/10.36416/1806-3756/e20200064

Schneider, D. A., Phillips, S. E., & Stoffolano, S. (1993). The simplified V-slope method of detecting the gas exchange threshold. Medicine and science in sports and exercise, 25(10), 1180–1184.

Sclauser Pessoa, I. M., Franco Parreira, V., Fregonezi, G. A., Sheel, A. W., Chung, F., & Reid, W. D. (2014). Refer-ence values for maximal inspiratory pressure: a systematic review. Canadian respiratory journal, 21(1), 43–50. https://doi.org/10.1155/2014/982374

Segizbaeva, M. O., Timofeev, N. N., Donina, Zha., Kur'yanovich, E. N., & Aleksandrova, N. P. (2015). Effects of inspiratory muscle training on resistance to fatigue of respiratory muscles during exhaustive exercise. Advances in experimental medicine and biology, 840, 35–43. https://doi.org/10.1007/5584_2014_20

Shei R. J. (2018). Recent Advancements in Our Understanding of the Ergogenic Effect of Respiratory Muscle Training in Healthy Humans: A Systematic Review. Journal of strength and conditioning research, 32(9), 2665–2676. https://doi.org/10.1519/JSC.0000000000002730

Soilemezi, E., Tsagourias, M., Talias, M. A., Soteriades, E. S., Makrakis, V., Zakynthinos, E., & Matamis, D. (2013). Sonographic assessment of changes in diaphragmatic kinetics induced by inspiratory resistive loading. Respirology (Carlton, Vic.), 18(3), 468–473. https://doi.org/10.1111/resp.12011

Thomaidis, S. P., Toubekis, A. G., Mpousmoukilia, S. S., Douda, H. T., Antoniou, P. D., & Tokmakidis, S. P. (2009). Alterations in maximal inspiratory mouth pressure during a 400-m maximum effort front-crawl swimming trial. The Journal of sports medicine and physical fitness, 49(2), 194–200.

Tong, T. K., Fu, F. H., Eston, R., Chung, P. K., Quach, B., & Lu, K. (2010). Chronic and acute inspiratory muscle loading augment the effect of a 6-week interval program on tolerance of high-intensity intermittent bouts of run-ning. Journal of strength and conditioning research, 24(11), 3041–3048. https://doi.org/10.1519/JSC.0b013e3181bf033b

Town, G. P., & Vanness, J. M. (1990). Metabolic responses to controlled frequency breathing in competitive swim-mers. Medicine and science in sports and exercise, 22(1), 112–116.

Ueki, J., De Bruin, P. F., & Pride, N. B. (1995). In vivo assessment of diaphragm contraction by ultrasound in normal subjects. Thorax, 50(11), 1157–1161. https://doi.org/10.1136/thx.50.11.1157

Vincent, M., Court-Fortune, I., Brun, C., Camdessanché, J. P., Vergès, S., & Costes, F. (2016). Determination of normal values for an isocapnic hyperpnea endurance test in healthy individuals. Respiratory physiology & neurobi-ology, 230, 5–10. https://doi.org/10.1016/j.resp.2016.04.007

World Medical Association (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA, 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053

Yañez-Sepulveda, R., Alvear-Ordenes, I., Tapia-Guajardo, A., Verdugo-Marchese, H., Cristi-Montero, C., & Tuesta, M. (2021). Inspiratory muscle training improves the swimming performance of competitive young male sprint swimmers. The Journal of sports medicine and physical fitness, 61(10), 1348–1353. https://doi.org/10.23736/S0022-4707.21.11769-4

Descargas

Publicado

2024-11-01

Cómo citar

Troncoso Galleguillos, P. G., Araneda, O. F., & Naranjo-Orellana, J. . (2024). El entrenamiento de los músculos inspiratorios durante 3 semanas aumenta la presión inspiratoria, pero no el rendimiento en jóvenes nadadores de élite chilenos (Inspiratory muscle training for 3 weeks increases maximal inspiratory pressure but not the performance in young Chilean elite swimmers). Retos, 60, 1110–1121. https://doi.org/10.47197/retos.v60.106715

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a