Pruebas más utilizadas para la valoración del índice de calidad muscular en niños y adolescentes: Una revisión sistemática (Most Used Tests for Assessing Muscle Quality Index in Children and Adolescents: A Systematic Review)
DOI:
https://doi.org/10.47197/retos.v57.106321Palabras clave:
Calidad muscular, niños, adolescentes, pruebasResumen
Diferentes investigaciones se han enfocado en mejorar el índice de calidad muscular (MQI) para aumentar la función muscular en población adulta. Sin embargo, en la población adolescente estas valoraciones no solo parecen ser escasas, sino que los métodos utilizados para evaluar MQI también parecen ser aún más limitados. Por tanto, los Objetivos fueron: i) Determinar cuáles son las prueba más utilizadas para determinar MQI en niños y adolescentes sanos o con alguna patología, y ii) observar la cantidad de estudios que han evaluado MQI en dicha población. Este estudio corresponde a una revisión sistemática que fue realizada siguiendo los elementos de informes preferidos para las revisiones sistemáticas y metaanálisis de las guías (PRISMA). Los límites de búsqueda fueron artículos publicados desde la fecha de inicio hasta el año 2023 que hayan incluido evaluaciones que permitieran obtener de manera explícita una resultante de MQI en niños o adolescentes. La búsqueda identificó artículos publicados en las bases de datos Web of Science, Scopus, SPORTDiscus, PubMed y Medline. Un total de 16 artículos fueron incluidos en la revisión sistemática, los cuales fueron estratificados en los diferentes métodos utilizados para valorar MQI. Existe una amplia variedad de pruebas para determinar MQI en población de niños y adolescentes, lo que en ocasiones condiciona a una falta de heterogeneidad y reproductibilidad de los resultados en los protocolos de evaluación. Pese a esto, se sugiere la incorporación de nuevos test que incorporen variables de fuerza muscular, potencia muscular y volumen muscular, pero de la misma zona corporal.
Palabras clave: Calidad muscular; niños; adolescentes; Pruebas
Abstract. Different research efforts have focused on improving the Muscle Quality Index (MQI) to enhance muscle function in the adult population. However, in the adolescent population, these assessments not only seem to be scarce but also the methods used to assess MQI appear to be even more limited. Therefore, the objectives were: i) To determine the most commonly used tests for determining MQI in healthy children and adolescents or those with some pathology, and ii) to observe the number of studies that have evaluated MQI in said population. This study corresponds to a systematic review that was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The search limits were articles published from the start date until the year 2023 that included assessments allowing for an explicit MQI outcome in children or adolescents. The search identified articles published in the Web of Science, Scopus, SPORTDiscus, PubMed, and Medline databases. A total of 16 articles were included in the systematic review, which were stratified according to the different methods used to assess MQI. There is a wide variety of tests to determine MQI in children and adolescents, which sometimes leads to a lack of heterogeneity and reproducibility of results in assessment protocols. Despite this, the incorporation of new tests that include variables of muscle strength, muscle power, and muscle volume from the same body area is suggested.
Keywords: Muscle quality; children; adolescents; test
Citas
Akamatsu, Y., Kusakabe, T., Arai, H., Yamamoto, Y., Nakao, K., Ikeue, K., Ishihara, Y., Tagami, T., Yasoda, A., & Ishii, K. (2022). Phase angle from bioelectrical impedance analysis is a useful indicator of muscle quality. Journal of Cachexia, Sarcopenia and Muscle, 13(1), 180–189.
Alizadeh, A., Dyck, S. M., & Karimi-Abdolrezaee, S. (2019). Traumatic spinal cord injury: an overview of pathophysiolo-gy, models and acute injury mechanisms. Frontiers in Neurology, 10, 282.
Balshaw, T. G., Maden-Wilkinson, T., Massey, G. J., & Folland, J. P. (2021). The Human Muscle Size and Strength Rela-tionship. Effects of Architecture, Muscle Force and Measurement Location. Medicine & Science in Sports & Exercise.
Barahona-Fuentes, G. D., Ojeda, Á. H., & Jerez-Mayorga, D. (2020). Effects of different methods of strength training on indicators of muscle fatigue during and after strength training: A systematic review. Motriz: Revista de Educação Física, 26.
Barahona-Fuentes, G., Huerta Ojeda, Á., & Chirosa-Ríos, L. (2021). Effects of Training with Different Modes of Strength Intervention on Psychosocial Disorders in Adolescents: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 18(18), 9477. https://doi.org/10.3390/ijerph18189477
Barahona-Fuentes, G., Huerta Ojeda, Á., Romero, G. L., Delgado-Floody, P., Jerez-Mayorga, D., Yeomans-Cabrera, M.-M., & Chirosa-Ríos, L. J. (2023). Muscle Quality Index is inversely associated with psychosocial variables among Chil-ean adolescents. BMC Public Health, 23(1), 2104.
Barbat-Artigas, S., Rolland, Y., Zamboni, M., & Aubertin-Leheudre, M. (2012). How to assess functional status: A new muscle quality index. Journal of Nutrition, Health and Aging, 16(1), 67–77. https://doi.org/10.1007/s12603-012-0004-5
Bohannon, R. W. (2015). Muscle strength: clinical and prognostic value of hand-grip dynamometry. Current Opinion in Clinical Nutrition & Metabolic Care, 18(5), 465–470.
Brown, J. C., Harhay, M. O., & Harhay, M. N. (2016). The muscle quality index and mortality among males and females. Annals of Epidemiology, 26(9), 648–653.
Carroll, D. D., Courtney-Long, E. A., Stevens, A. C., Sloan, M. L., Lullo, C., Visser, S. N., Fox, M. H., Armour, B. S., Campbell, V. A., & Brown, D. R. (2014). Vital signs: disability and physical activity—United States, 2009–2012. Mor-bidity and Mortality Weekly Report, 63(18), 407.
Clemons, J. M., Campbell, B., & Jeansonne, C. (2010). Validity and reliability of a new test of upper body power. The Journal of Strength & Conditioning Research, 24(6), 1559–1565.
Codari, M., Zanardo, M., di Sabato, M. E., Nocerino, E., Messina, C., Sconfienza, L. M., & Sardanelli, F. (2020). MRI‐Derived Biomarkers Related to Sarcopenia: A Systematic Review. Journal of Magnetic Resonance Imaging, 51(4), 1117–1127.
Cortez, A. C. leal, Vale, R. G. de S., Di Masi, F. D. M., Reis, N. C. V., Lucena, B. M., & Dantas, E. H. M. (2023). Evidencia científica sobre los efectos del entrenamiento resistente, aeróbico y de flexibilidad y sus adapta-ciones crónicas en la salud de los mayores (Scientific evidence about the effects of resisted, aerobic and flexibility training and their chronic adapta-tions in the health of the elderly). Retos, 48, 978–987. https://doi.org/10.47197/retos.v48.78231
Da Costa, L. O. F., Soto, D. S., Brito, C. J., Muñoz, E. A., & Miarka, B. (2024). Dynamic strength and muscle power in elite and non-elite Brazilian jiu-jitsu (BJJ) athletes: a systematic review with meta-analysis. Retos: nuevas tendencias en educación física, deporte y recreación, (52), 291-303.
da Cunha Nascimento, D., Prestes, J., de Sousa Diniz, J., Beal, P. R., Alves, V. P., Stone, W., & Beal, F. L. R. (2020). Comparison of field-and laboratory-based estimates of muscle quality index between octogenarians and young older adults: an observational study. Journal of Exercise Rehabilitation, 16(5), 458.
Delgado-Floody, P., Gómez-López, M., Caamaño-Navarrete, F., Valdés-Badilla, P., & Jerez-Mayorga, D. (2023). The Mediating Role of the Muscle Quality Index in the Relation of Screen Time and Abdominal Obesity with Health-Related Quality of Life in Chilean Schoolchildren. Nutrients, 15(3), 714.
Dubois, G. J. R., Bachasson, D., Lacourpaille, L., Benveniste, O., & Hogrel, J.-Y. (2018). Local texture anisotropy as an estimate of muscle quality in ultrasound imaging. Ultrasound in Medicine & Biology, 44(5), 1133–1140.
Duran, I., Martakis, K., Hamacher, S., Stark, C., Semler, O., & Schoenau, E. (2018). Are there effects of age, gender, height, and body fat on the functional muscle-bone unit in children and adults? Osteoporosis International, 29, 1069–1079.
Fragala, M. S., Kenny, A. M., & Kuchel, G. A. (2015). Muscle Quality in Aging: a Multi-Dimensional Approach to Muscle Functioning with Applications for Treatment. Sports Medicine, 45(5), 641–658. https://doi.org/10.1007/s40279-015-0305-z
Fukunaga, Y., Takai, Y., Yoshimoto, T., Fujita, E., Yamamoto, M., & Kanehisa, H. (2014). Effect of maturation on muscle quality of the lower limb muscles in adolescent boys. Journal of Physiological Anthropology, 33(1), 1–6.
Gater, D. R., & Farkas, G. J. (2016). Alterations in body composition after SCI and the mitigating role of exercise. The Physiology of Exercise in Spinal Cord Injury, 175–198.
Gorgey, A. S., & Shepherd, C. (2010). Skeletal muscle hypertrophy and decreased intramuscular fat after unilateral re-sistance training in spinal cord injury: case report. The Journal of Spinal Cord Medicine, 33(1), 90–95.
Goryachev, I., Tresansky, A. P., Ely, G. T., Chrzanowski, S. M., Nagy, J. A., Rutkove, S. B., & Anthony, B. W. (2022). Comparison of Quantitative Ultrasound Methods to Classify Dystrophic and Obese Models of Skeletal Muscle. Ultra-sound in Medicine & Biology, 48(9), 1918–1932.
Grgic, J., Schoenfeld, B. J., Orazem, J., & Sabol, F. (2022). Effects of resistance training performed to repetition failure or non-failure on muscular strength and hypertrophy: a systematic review and meta-analysis. Journal of Sport and Health Science, 11(2), 202–211.
Guglielmi, G., Ponti, F., Agostini, M., Amadori, M., Battista, G., & Bazzocchi, A. (2016). The role of DXA in sarcopenia. Aging Clinical and Experimental Research, 28, 1047–1060.
Hanna, L., Nguo, K., Furness, K., Porter, J., & Huggins, C. E. (2022). Association between skeletal muscle mass and quality of life in adults with cancer: a systematic review and meta‐analysis. Journal of Cachexia, Sarcopenia and Muscle, 13(2), 839–857.
Henriksson, H., Henriksson, P., Tynelius, P., & Ortega, F. B. (2019). Muscular weakness in adolescence is associated with disability 30 years later: a population-based cohort study of 1.2 million men. British Journal of Sports Medicine, 53(19), 1221–1230.
Huerta Ojeda, Á., Cifuentes Zapata, C., Barahona-Fuentes, G., Yeomans-Cabrera, M.-M., & Chirosa-Ríos, L. J. (2023). Variable Resistance—An Efficient Method to Generate Muscle Potentiation: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 20(5), 4316.
Huerta Ojeda, A., Fontecilla Díaz, B., Yeomans Cabrera, M. M., & Jerez-Mayorga, D. (2021). Grip power test: A new valid and reliable method for assessing muscle power in healthy adolescents. Plos One, 16(10), e0258720.
Jain, A., Sankar, J., Kabra, S. K., Jat, K. R., Jana, M., & Lodha, R. (2023). Evaluation of Changes in Quadriceps Femoris Muscle in Critically III Children Using Ultrasonography. Indian Journal of Pediatrics, 90(6), 541–547.
Jerez, D. A., Machado, R., & Cerda, E. (2018). AB1400-HPR Muscle quality index in obese subjects with hip osteoarthritis. BMJ Publishing Group Ltd.
Jerez-Mayorga, D., Chirosa, L., Reyes, A., Delgado-Floody, P., Machado, R., & Guisado, I. M. (2019). Muscle quality in-dex and isometric strength in older adults with hip osteoarthritis. PeerJ, 7, e7471. https://doi.org/10.7717/peerj.7471
Judd, D. L., Thomas, A. C., Dayton, M. R., & Stevens-Lapsley, J. E. (2014). Strength and functional deficits in individuals with hip osteoarthritis compared to healthy, older adults. Disability and Rehabilitation, 36(4), 307–312.
Kang, Y., Kim, J., Kim, D.-Y., Kim, S., Park, S., Lim, H., & Koh, H. (2020). Association between dietary patterns and handgrip strength: Analysis of the korean national health and nutrition examination survey data between 2014 and 2017. Nutrients, 12(10), 3048.
Kang, Y., Park, S., Kim, S., & Koh, H. (2020). Handgrip strength among Korean adolescents with metabolic syndrome in 2014–2015. Journal of Clinical Densitometry, 23(2), 271–277.
Kołodziej, M., & Czajka, K. (2022). Skeletal muscle quality in 6-and 7-y-old children assessed using bioelectrical imped-ance analysis. Nutrition, 96, 111568.
Kopiczko, A., & Cieplińska, J. (2022). Forearm bone mineral density in adult men after spinal cord injuries: impact of physical activity level, smoking status, body composition, and muscle strength. BMC Musculoskeletal Disorders, 23(1), 81.
Lee, S., Kim, Y., White, D. A., Kuk, J. L., & Arslanian, S. (2012). Relationships between insulin sensitivity, skeletal mus-cle mass and muscle quality in obese adolescent boys. European Journal of Clinical Nutrition, 66(12), 1366–1368.
Lees, M. J., Wilson, O. J., Hind, K., & Ispoglou, T. (2019). Muscle quality as a complementary prognostic tool in con-junction with sarcopenia assessment in younger and older individuals. European Journal of Applied Physiology, 119(5), 1171–1181.
Løkkeberg, S. T., & Thoresen, G. (2022). Experiences of quality of life in people with Multiple Sclerosis who are in a wheelchair. Nursing Open, 9(4), 2217–2226.
McGregor, R. A., Cameron-Smith, D., & Poppitt, S. D. (2014). It is not just muscle mass: a review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longevity & Healthspan, 3(1), 1–8.
Melo, G. L. R., Moraes, M. R., Nascimento, E. F., Boato, E. M., Beal, F. L. R., Stone, W., & da Cunha Nascimento, D. (2022). Field‐based versus laboratory‐based estimates of muscle quality index in adolescents with and without Down syndrome. Journal of Intellectual Disability Research, 66(12), 1000–1008.
Messina, C., Albano, D., Gitto, S., Tofanelli, L., Bazzocchi, A., Ulivieri, F. M., Guglielmi, G., & Sconfienza, L. M. (2020). Body composition with dual energy X-ray absorptiometry: from basics to new tools. Quantitative Imaging in Medicine and Surgery, 10(8), 1687.
Morse, L. R., Biering-Soerensen, F., Carbone, L. D., Cervinka, T., Cirnigliaro, C. M., Johnston, T. E., Liu, N., Troy, K. L., Weaver, F. M., & Shuhart, C. (2019). Bone mineral density testing in spinal cord injury: 2019 ISCD official posi-tion. Journal of Clinical Densitometry, 22(4), 554–566.
Mota, J. A., Stock, M. S., & Thompson, B. J. (2017). Vastus lateralis and rectus femoris echo intensity fail to reflect knee extensor specific tension in middle-school boys. Physiological Measurement, 38(8), 1529.
Naimo, M. A., & Gu, J. K. (2022). The Relationship between Resistance Training Frequency and Muscle Quality in Ado-lescents. International Journal of Environmental Research and Public Health, 19(13), 8099.
National Spinal Cord Injury Statistical Center. (2022). Traumatic Spinal Cord Injury Facts and Figures at a Glance 2022 SCI Da-ta Sheet. https://msktc.org/sites/default/files/SCI-Facts-Figs-2022-Eng-508.pdf
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., & others. (2021). The PRISMA 2020 statement: an updated guideline for reporting system-atic reviews. Bmj, 372.
Peeters, N., Hanssen, B., Bar-On, L., De Groote, F., De Beukelaer, N., Coremans, M., Van den Broeck, C., Dan, B., Van Campenhout, A., & Desloovere, K. (2023). Associations between muscle morphology and spasticity in children with spastic cerebral palsy. European Journal of Paediatric Neurology, 44, 1–8.
Pillen, S., & Van Alfen, N. (2015). Muscle ultrasound from diagnostic tool to outcome measure--Quantification is the challenge. Muscle & Nerve, 52(3), 319–320.
Prieto González, P., Sánchez-Infante, J., & Fernández-Galván, L. M. . (2022). ¿Entrenan los hombres adultos jóvenes que buscan mejorar su fuerza o desarrollar hipertrofia muscular de acuerdo con las actuales recomendaciones para el en-trenamiento de fuerza (Do young adult males aiming to improve strength or develop muscle hypertrophy train accor-ding to the current strength and conditioning recommendations?). Retos, 46, 714–724. https://doi.org/10.47197/retos.v46.93785
Ransdell, L. B., Wayment, H. A., Lopez, N., Lorts, C., Schwartz, A. L., Pugliesi, K., Pohl, P. S., Bycura, D., & Cam-plain, R. (2021). The impact of resistance training on body composition, muscle strength, and functional fitness in old-er women (45–80 years): A systematic review (2010–2020). Women, 1(3), 143–168.
Reyes-Ferrada, W., Rodríguez-Perea, Á., Chirosa-Ríos, L., Martínez-García, D., & Jerez-Mayorga, D. (2022). Muscle Quality and Functional and Conventional Ratios of Trunk Strength in Young Healthy Subjects: A Pilot Study. Interna-tional Journal of Environmental Research and Public Health, 19(19), 12673.
Sabido, R., Peñaranda, M., & Hernández-Davó, J. L. (2016). Comparison of Acute Responses To Four Different Hyper-trophy-Oriented Resistance Training Methodologies. European Journal of Human Movement, 37, 109–121.
Seo, M.-W., Jung, S.-W., Kim, S.-W., Jung, H. C., Kim, D.-Y., & Song, J. K. (2020). Comparisons of muscle quality and muscle growth factor between sarcopenic and non-sarcopenic older women. International Journal of Environmental Research and Public Health, 17(18), 6581.
Tatangelo, T., Muollo, V., Ghiotto, L., Schena, F., & Rossi, A. P. (2022). Exploring the association between handgrip, lower limb muscle strength, and physical function in older adults: A narrative review. Experimental Gerontology, 111902.
Willcocks, R. J., Barnard, A. M., Wortman, R. J., Senesac, C. R., Lott, D. J., Harrington, A. T., Zilke, K. L., Forbes, S. C., Rooney, W. D., & Wang, D.-J. (2022). Development of contractures in DMD in relation to MRI-determined muscle quality and ambulatory function. Journal of Neuromuscular Diseases, 9(2), 289–302.
Wokke, B. H., Van Den Bergen, J. C., Versluis, M. J., Niks, E. H., Milles, J., Webb, A. G., Van Zwet, E. W., Aartsma-Rus, A., Verschuuren, J. J., & Kan, H. E. (2014). Quantitative MRI and strength measurements in the assessment of muscle quality in Duchenne muscular dystrophy. Neuromuscular Disorders, 24(5), 409–416.
Wolfe, R. R. (2006). The underappreciated role of muscle in health and disease. American Journal of Clinical Nutrition, 84(3), 475–482. https://doi.org/10.1093/ajcn/84.3.475
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Retos
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess