Extracción fraccional de O2 y condición física entre niños activos e inactivos físicamente durante la recuperación post ejercicio (Fractional O2 extraction and fitness among physically active and inactive children during post-exercise recovery)
DOI:
https://doi.org/10.47197/retos.v58.105984Palabras clave:
NIRS, Physical Fitness, Exercise Recovery, Muscle Oxygenation, Children, Physical ActivityResumen
El objetivo de este estudio fue determinar las diferencias en la capacidad de extracción de O2 muscular y la condición física entre escolares físicamente activos y sedentarios. Participaron 19 estudiantes de 10 a 14 años, categorizados como físicamente activos o inactivos. Además, se llevó a cabo una batería de evaluaciones de la condición física básica y de variables cardiovasculares. Los niños físicamente activos demostraron una eficiencia significativamente mayor en la extracción y resaturación de O2 muscular durante la recuperación post-ejercicio en comparación con sus homólogos sedentarios (17,8 ± 8,11s vs 26,1 ± 8,54 s; p = 0,004; η²p: 0,271). En la prueba de aptitud física sólo hubo diferencias significativas en la prueba de sentarse y pararse de la silla durante 30s (27,8 ± 3,97 vs. 19,4 ± 2,88 repeticiones. p=< 0,001 η²p: 0,614). Estos hallazgos subrayan el potencial de la actividad física regular para optimizar la respuesta vascular periférica y la utilización del oxígeno muscular durante la recuperación post-ejercicio en niños.
Palabras clave: NIRS; Condición física; Recuperación del ejercicio; Oxigenación muscular; Actividad física.
Abstract. This study aimed to determine the differences in muscle O2 extraction capacity and physical fitness between physically active and sedentary schoolchildren. 19 students aged 10 to 14 years participated, categorized as physically active or inactive. In addition, a battery of basic physical condition and cardiovascular variables assessments was carried out. Physically active children demonstrated significantly greater efficiency in muscle O2 extraction and resaturation during post-exercise recovery compared to sedentary counterparts (17.8 ± 8.11s vs 26.1 ± 8.54 s; p = 0.004; η²p: 0.271). In the physical fitness tests there were only significant differences in the 30s Chair Stand Test (27.8 ± 3.97 vs. 19.4 ± 2.88 reps. P=< 0.001 η²p: 0.614). These findings underscore the potential of regular physical activity to optimize peripheral vascular response and muscle oxygen utilization during post-exercise recovery in children.
Keywords: NIRS; Physical Fitness; Exercise Recovery; Muscle Oxygenation; Physical Activity
Citas
Alonso-Martínez, A. M., Ramírez-Vélez, R., García-Alonso, Y., Izquierdo, M., & García-Hermoso, A. (2021). Physical Activity, Sedentary Behavior, Sleep and Self-Regulation in Spanish Preschoolers during the COVID-19 Lockdown. Inter-national journal of environmental research and public health, 18(2), 693. https://doi.org/10.3390/ijerph18020693
Alvero-Cruz, J., Alvarez, E., Fernández, J., Barrera, J., Carrillo, M., & Sardhina, L. (2010). Validez de los índices de masa corporal y de masa grasa como indicadores de sobrepeso en adolescentes españoles: estudio Escola. Medicina Clínica, 135(1),8-4. https://doi.org/10.1016/j.medcli.2010.01.017
Bull, F. C., Al-Ansari, S. S., Biddle, S., Borodulin, K., Buman, M. P., Cardon, G., Carty, C., Chaput, J. P., Chastin, S., Chou, R., Dempsey, P. C., DiPietro, L., Ekelund, U., Firth, J., Friedenreich, C. M., Garcia, L., Gichu, M., Jago, R., Katzmarzyk, P. T., Lambert, E., … Willumsen, J. F. (2020). World Health Organization 2020 guidelines on physical ac-tivity and sedentary behaviour. British journal of sports medicine, 54(24), 1451–1462. https://doi.org/10.1136/bjsports-2020-102955
Berrios Aguayo, B., Latorre Román, P. Ángel, Salas Sánchez, J., & Pantoja Vallejo, A. (2022). Effect of physical activity and
fitness on executive functions and academic performance in children of elementary school. A systematic review (Efectos de la actividad física y condición física sobre funciones ejecutivas y rendimiento académico en niños de Educación Primaria. Una revisión sistemática). Cultura, Ciencia Y Deporte, 17(51). https://doi.org/10.12800/ccd.v17i51.1699
Callewaert, M., Boone, J., Celie, B., De Clercq, D., & Bourgois, J. (2013). Quadriceps muscle fatigue in trained and un-trained boys. International journal of sports medicine, 34(1), 14–20. https://doi.org/10.1055/s-0032-1316359
Carbone, S., Del Buono, M. G., Ozemek, C., & Lavie, C. J. (2019). Obesity, risk of diabetes and role of physical activity, exercise training and cardiorespiratory fitness. Progress in cardiovascular diseases, 62(4), 327–333. https://doi.org/10.1016/j.pcad.2019.08.004
Castro-Piñero, J., Chillón, P., Ortega, F. B., Montesinos, J. L., Sjöström, M., & Ruiz, J. R. (2009). Criterion-related validi-ty of sit-and-reach and modified sit-and-reach test for estimating hamstring flexibility in children and adolescents aged 6-17 years. International journal of sports medicine, 30(9), 658–662. https://doi.org/10.1055/s-0029-1224175
Cieśla, E., Mleczko, E., Bergier, J., Markowska, M., & Nowak-Starz, G. (2014). Health-Related Physical Fitness, BMI, physical activity and time spent at a computer screen in 6 and 7-year-old children from rural areas in Poland. Annals of agricultural and environmental medicine : AAEM, 21(3), 617–621. https://doi.org/10.5604/12321966.1120613
Chaput, J. P., Willumsen, J., Bull, F., Chou, R., Ekelund, U., Firth, J., Jago, R., Ortega, F. B., & Katzmarzyk, P. T. (2020). 2020 WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5-17 years: sum-mary of the evidence. The international journal of behavioral nutrition and physical activity, 17(1), 141. https://doi.org/10.1186/s12966-020-01037-z
Chen, W., Hammond-Bennett, A., Hypnar, A., & Mason, S. (2018). Health-related physical fitness and physical activity in elementary school students. BMC public health, 18(1), 195. https://doi.org/10.1186/s12889-018-5107-4
Cieśla, E., Mleczko, E., Bergier, J., Markowska, M., & Nowak-Starz, G. (2014). Health-Related Physical Fitness, BMI, physical activity and time spent at a computer screen in 6 and 7-year-old children from rural areas in Poland. Annals of agricultural and environmental medicine : AAEM, 21(3), 617–621. https://doi.org/10.5604/12321966.1120613
Cohen, D. D., Voss, C., Taylor, M. J., Stasinopoulos, D. M., Delextrat, A., & Sandercock, G. R. (2010). Handgrip strength in English schoolchildren. Acta paediatrica (Oslo, Norway : 1992), 99(7), 1065–1072. https://doi.org/10.1111/j.1651-2227.2010.01723.x
Dong, X., Ding, L., Zhang, R., Ding, M., Wang, B., & Yi, X. (2021). Physical Activity, Screen-Based Sedentary Behavior and Physical Fitness in Chinese Adolescents: A Cross-Sectional Study. Frontiers in pediatrics, 9, 722079. https://doi.org/10.3389/fped.2021.722079
Dowd, K. P., Harrington, D. M., Bourke, A. K., Nelson, J., & Donnelly, A. E. (2012). The measurement of sedentary pat-terns and behaviors using the activPAL™ Professional physical activity monitor. Physiological measurement, 33(11), 1887–1899. https://doi.org/10.1088/0967-3334/33/11/1887
España-Romero, V., Ortega, F. B., Vicente-Rodríguez, G., Artero, E. G., Rey, J. P., & Ruiz, J. R. (2010). Elbow position affects handgrip strength in adolescents: validity and reliability of Jamar, DynEx, and TKK dynamometers. Journal of strength and conditioning research, 24(1), 272–277. https://doi.org/10.1519/JSC.0b013e3181b296a5
Freedson, P., Pober, D., & Janz, K. F. (2005). Calibration of accelerometer output for children. Medicine and science in sports and exercise, 37(11 Suppl), S523–S530. https://doi.org/10.1249/01.mss.0000185658.28284.ba
García Ordóñez, E., & Pampín Blanco, N. (2022). Relación entre condición y nivel de actividad física en escolares gallegos (Relationship between condition and level of physical activity in Galician schoolchildren). Retos, 45, 282–289. https://doi.org/10.47197/retos.v45i0.92095
Gerz, E., Geraskin, D., Franke, J., Platen, P., Steimers, A., & Kohl-Bareis, M. (2013). Tissue oxygenation during exercise measured with NIRS: reproducibility and influence of wavelengths. Advances in experimental medicine and biology, 789, 171–177. https://doi.org/10.1007/978-1-4614-7411-1_24
Gonçalves, E. C. A., Alves Junior, C. A. S., da Silva, V. S., Pelegrini, A., & Silva, D. A. S. (2022). Anthropometric indica-tors of body fat as discriminators of low levels of cardiorespiratory fitness in adolescents. Journal of pediatric nursing, 62, 43–50. https://doi.org/10.1016/j.pedn.2021.11.014
Gonçalves, E. C. D. A., Fernandes, R., Alves, C. A. S., Silva, D. A. S., & Trindade, E. B. S. D. M. (2021). Oxygen uptake and indicators of obesity: Meta-analysis including 17,604 adolescents. Revista Brasileira de Medicina do Esporte, 27(6), 621-626.
Guthold, R., Stevens, G. A., Riley, L. M., & Bull, F. C. (2020). Global trends in insufficient physical activity among adoles-cents: a pooled analysis of 298 population-based surveys with 1·6 million participants. The Lancet. Child & adolescent health, 4(1), 23–35. https://doi.org/10.1016/S2352-4642(19)30323-2
Greggio, C., Jha, P., Kulkarni, S. S., Lagarrigue, S., Broskey, N. T., Boutant, M., Wang, X., Conde Alonso, S., Ofori, E., Auwerx, J., Cantó, C., & Amati, F. (2017). Enhanced Respiratory Chain Supercomplex Formation in Response to Exer-cise in Human Skeletal Muscle. Cell metabolism, 25(2), 301–311. https://doi.org/10.1016/j.cmet.2016.11.004
Herazo-Beltrán, Y.; Núñez-Bravo, N.; Sánchez-Güette, L.; Osorio-Álvarez, L.; Quintero, E.; Yepes, L.; & Vázquez, K. (2018). Condición física en escolares: diferencias según los niveles de actividad física. Revista latinoamericana de hiper-tensión, 13 (5), 317-322.
Recuperado de: yc: https://www.redalyc.org/articulo.oa?id=170263776002
Kariippanon, K. E., Cliff, D. P., Okely, A. D., & Parrish, A. M. (2019). Flexible learning spaces reduce sedentary time in adolescents. Journal of science and medicine in sport, 22(8), 918–923. https://doi.org/10.1016/j.jsams.2019.02.007
Kime, R., Fujioka, M., Osawa, T., Takagi, S., Niwayama, M., Kaneko, Y., Osada, T., Murase, N., & Katsumura, T. (2013). Which is the best indicator of muscle oxygen extraction during exercise using NIRS?: Evidence that HHb is not the can-didate. Advances in experimental medicine and biology, 789, 163–169. https://doi.org/10.1007/978-1-4614-7411-1_23
Högström, G., Nordström, A., & Nordström, P. (2014). High aerobic fitness in late adolescence is associated with a reduced risk of myocardial infarction later in life: a nationwide cohort study in men. European heart journal, 35(44), 3133–3140. https://doi.org/10.1093/eurheartj/eht527
Kaczor, J. J., Ziolkowski, W., Popinigis, J., & Tarnopolsky, M. A. (2005). Anaerobic and aerobic enzyme activities in hu-man skeletal muscle from children and adults. Pediatric research, 57(3), 331–335. https://doi.org/10.1203/01.PDR.0000150799.77094.DE
Latorre-Román, P. A., Mora-López, D., & García-Pinillos, F. (2018). Effects of a physical activity programme in the school setting on physical fitness in preschool children. Child: care, health and development, 44(3), 427–432. https://doi.org/10.1111/cch.12550
Lubans, D., Richards, J., Hillman, C., Faulkner, G., Beauchamp, M., Nilsson, M., Kelly, P., Smith, J., Raine, L., & Biddle, S. (2016). Physical Activity for Cognitive and Mental Health in Youth: A Systematic Review of Mechanisms. Pediatrics, 138(3), e20161642. https://doi.org/10.1542/peds.2016-1642
Owen-Jones, Z., Perrochon, A., Hermand, E., Ponthier, L., Fourcade, L., & Borel, B. (2020). Evolution of Muscular Oxy-genation during a Walking Test in Preterm Children. The Journal of pediatrics, 227, 142–148.e1. https://doi.org/10.1016/j.jpeds.2020.07.082
Perrey S. (2022). Muscle Oxygenation Unlocks the Secrets of Physiological Responses to Exercise: Time to Exploit it in the Training Monitoring. Frontiers in sports and active living, 4, 864825. https://doi.org/10.3389/fspor.2022.864825
Pickering, T. G., Hall, J. E., Appel, L. J., Falkner, B. E., Graves, J., Hill, M. N., Jones, D. W., Kurtz, T., Sheps, S. G., & Roccella, E. J. (2005). Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation, 111(5), 697–716. https://doi.org/10.1161/01.CIR.0000154900.76284.F6
Posser, S. R., Callegaro, C. C., Beltrami-Moreira, M., & Moreira, L. B. (2016). Effect of inspiratory muscle training with load compared with sham training on blood pressure in individuals with hypertension: study protocol of a double-blind randomized clinical trial. Trials, 17, 382. https://doi.org/10.1186/s13063-016-1514-y
Rasica, L., Inglis, E. C., Iannetta, D., Soares, R. N., & Murias, J. M. (2022). Fitness Level- and Sex-Related Differences in Macrovascular and Microvascular Responses during Reactive Hyperemia. Medicine and science in sports and exercise, 54(3), 497–506. https://doi.org/10.1249/MSS.0000000000002806
Rey-López, J. P., Vicente-Rodríguez, G., Biosca, M., & Moreno, L. A. (2008). Sedentary behaviour and obesity develop-ment in children and adolescents. Nutrition, metabolism, and cardiovascular diseases : NMCD, 18(3), 242–251. https://doi.org/10.1016/j.numecd.2007.07.008
Rodríguez-Núñez, Iván, & Valderrama Erazo, Paulo. (2021). Sedentarismo y obesidad en pediatría: la otra pandemia. Andes pediatrica, 92(3), 478-479. https://dx.doi.org/10.32641/andespediatr.v92i3.3775
Ross, M., Kargl, C. K., Ferguson, R., Gavin, T. P., & Hellsten, Y. (2023). Exercise-induced skeletal muscle angiogenesis: impact of age, sex, angiocrines and cellular mediators. European journal of applied physiology, 123(7), 1415–1432. https://doi.org/10.1007/s00421-022-05128-6
Ruiz, JR, Ortega, FB, Gutiérrez, A., Meusel, D., Sjostrom, M. y Castillo, MJ (2006) Evaluación de la aptitud física relaciona-da con la salud en la infancia y la adolescencia: un enfoque europeo basado en AVENA, EYHS y HELENA estudios. Revis-ta de Salud Pública, 14, 269-277.http://dx.doi.org/10.1007/s10389-006-0059-z
Ruiz, J. R., España Romero, V., Castro Piñero, J., Artero, E. G., Ortega, F. B., Cuenca García, M., Jiménez Pavón, D., Chillón, P., Girela Rejón, M.ª J., Mora, J., Gutiérrez, A., Suni, J., Sjöstrom, M., & Castillo, M. J.. (2011). Batería ALP-HA-Fitness: test de campo para la evaluación de la condición física relacionada con la salud en niños y adolescentes. Nu-trición Hospitalaria, 26(6), 1210-1214. Recuperado en 02 de abril de 2024, de http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112011000600003&lng=es&tlng=es.
Runacres, A., MacKintosh, K. A., Chastin, S., & McNarry, M. A. (2023). The associations of physical activity, sedentary time, and sleep with V˙O2max in trained and untrained children and adolescents: A novel five-part compositional analy-sis. PloS one, 18(3), e0275557. https://doi.org/10.1371/journal.pone.0275557
Sanni, A. A., & McCully, K. K. (2019). Interpretation of Near-Infrared Spectroscopy (NIRS) Signals in Skeletal Muscle. Journal of functional morphology and kinesiology, 4(2), 28. https://doi.org/10.3390/jfmk4020028
Santana, C. C. A., Azevedo, L. B., Cattuzzo, M. T., Hill, J. O., Andrade, L. P., & Prado, W. L. (2017). Physical fitness and academic performance in youth: A systematic review. Scandinavian journal of medicine & science in sports, 27(6), 579–603. https://doi.org/10.1111/sms.12773
Seravalle, G., Grassi, G. (2022). Effect of Regular Exercise on Autonomic Nervous System Activity. In: Palatini, P., Agabiti-Rosei, E., Mancia, G. (eds) Exercise, Sports and Hypertension. Updates in Hypertension and Cardiovascular Protection. Springer, Cham.
Shirai, Y., Ito, T., Ito, Y., Matsunaga, N., Noritake, K., Ochi, N., & Sugiura, H. (2023). Evaluation of Muscle Oxygen Dy-namics in Children's Gait and Its Relationship with the Physiological Cost Index. Healthcare (Basel, Switzerland), 11(2), 221. https://doi.org/10.3390/healthcare11020221
Silva, D. A. S., de Andrade Gonçalves, E. C., Coelho, E. F., Cerqueira, M. S., & Werneck, F. Z. (2022). Cardiorespiratory Fitness and Physical Activity among Children and Adolescents: 3-Year Longitudinal Study in Brazil. International journal of environmental research and public health, 19(18), 11431. https://doi.org/10.3390/ijerph191811431
Soares, R. N., McLay, K. M., George, M. A., & Murias, J. M. (2017). Differences in oxidative metabolism modulation in-duced by ischemia/reperfusion between trained and untrained individuals assessed by NIRS. Physiological reports, 5(19), e13384. https://doi.org/10.14814/phy2.13384
Song, Y., Jia, H., Hua, Y., Wu, C., Li, S., Li, K., Liang, Z., & Wang, Y. (2022). The Molecular Mechanism of Aerobic Ex-ercise Improving Vascular Remodeling in Hypertension. Frontiers in physiology, 13, 792292. https://doi.org/10.3389/fphys.2022.792292
Tuesta-Roa, M., Yañez-Sepulveda, R., Barraza-Gómez, F., Polgatiz-Gajardo, A., & Báez-San Martín, E. (2020). Evaluación por acelerometría del ejercicio realizado por escolares chilenos durante una clase de educación física y su relación con el estado ponderal (Accelerometer–based assessment of exercise in Chilean schoolchildren during a physical education class. Retos, 37, 190–196. https://doi.org/10.47197/retos.v37i37.67403
Vaquero-Cristóbal, R., Martínez González-Moro, I., Alacid, F., & Ros, E. (2015). Efectos de la lateralidad sobre la flexibili-dad, la fuerza-resistencia y el equilibrio en mujeres mayores activas (Effects of laterality on flexibility, strength-endurance and balance in active older women). Retos, 27, 127–130. https://doi.org/10.47197/retos.v0i27.34362
Vidarte Claros, J. A., Vélez Alvarez, C., Arenas, A. A., & Parra Sánchez, J. H. (2022). Valores percentiles de la condición física saludable en escolares (Percentile values of healthy physical condiction in schools). Retos, 43, 162–170. https://doi.org/10.47197/retos.v43i0.88112
Wakasugi, T., Morishita, S., Kaida, K., Itani, Y., Kodama, N., Ikegame, K., Ogawa, H., & Domen, K. (2018). Impaired skeletal muscle oxygenation following allogeneic hematopoietic stem cell transplantation is associated with exercise ca-pacity. Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer, 26(7), 2149–2160. https://doi.org/10.1007/s00520-017-4036-6
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Retos
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess