Ejercicio Físico es efectivo para la rehabilitación de la presión y rigidez arterial en adultos con hipertensión (Exercise training is effective for arterial stiffness and blood pressure rehabilitation in hy-pertensive adults)

Autores/as

DOI:

https://doi.org/10.47197/retos.v56.104740

Palabras clave:

Hypertension arterial, Disfunción Endotelial, Velocidad de onda de pulso, Indice de aumentación, Indice tobillo-Braquial

Resumen

Existe limitada información respecto a la reducción de la rigidez arterial entre sujetos con hipertensión y factores de riesgo para enfermedades vascular-metabólicas (i.e., de los vasos sanguíneos), donde el ejercicio induce un rol fisioterapéutico y preventivo. El objetivo del estudio fue 1) testear los efectos de 6 semanas de ejercicio concurrente de tipo alta intensidad interválico y de fuerza (CTHIIT+RT) en la la rigidez arterial de sujetos con diferente control de presión arterial y 2) comparar la magnitud de estas adaptaciones al ejercicio en diferentes variables secundarias de presión arterial y vasculares. Estudio clínico experimental aleatorizado desarrollado en seis categorías (3 controles y 3 experimentales) de adultos; controles hipertensos (CG-HTN, n=10), control presión elevada (CG-ELE, n=10), controles normotensos (CG-NT, n=10), o experimental hipertensos (ExG-HTN, n=10), presión elevada (ExG-ELE, n=10), o normotensos (ExG-NT, n=10). Los sujetos desarrollaron 6 semanas de CTHIIT+RT, donde la velocidad de onda de pulso de la arteria braquial (PWVba) (resultado primario) y variables de presión arterial, composición corporal y vasculares (resultados secundarios), fueron medidas antes y después de 6 semanas de intervención. Posterior a 6 semanas de CTHIIT+RT se observaron diferencias significativas en la magnitud de reducción de ΔPWVba en el grupo ExG-HTN versus grupo ExG-NT (diff. 0.86 m/s-1) y entre el grupo ExG-ELE vs. ExG-NT (diff. 0.76 m/s-1). En conclusión, 6 semanas de CTHIIT+RT reducen la rigidez arterial en adultos con diferente control de presión arterial, con una magnitud superior en pacientes hipertensos. Beneficios adicionales se encontraron en cese de la presión arterial elevada en los pacientes hipertensos.

Palabras claves: Hipertensión arterial; Disfunción endotelial; Velocidad de onda de pulso; Índice de aumentación; índice tobillo-braquial.

Abstract. There is limited information regarding the arterial stiffness decrease in subjects with hypertension and risk factors to vascular-metabolic (i.e., of blood vessels) where the exercise induces a therapeutic and preventive role. This study aimed 1) to test the effects of 6 weeks of concurrent exercise including high-intensity interval plus resistance training (CTHIIT+RT) on the arterial stiffness condition of individuals with different blood pressure controls, and 2) to compare the magnitude of exercise adaptations among different blood pressures and vascular characteristics. An experimental clinical randomized study was conducted in six categories (three controls and three experimental groups) of adults who were divided into six groups: control hypertensive (CG-HTN, n=10), control elevated blood pressure (CG-ELE, n=10), control normotensive (CG-NT, n=10), experimental hypertensive (ExG-HTN, n=10), elevated blood pressure (ExG-ELE, n=10), or normotensive (ExG-NT, n=10). The participants underwent 6 weeks of concurrent training with 5 min of high-intensity interval plus 5 min of resistance training (CTHIIT+RT), where systolic pulse wave velocity of the brachial artery (PWVba) (primary outcome) and additional secondary blood pressure, body composition, and vascular outcomes were measured before and after 6 weeks of intervention. After 6 weeks of CTHIIT+RT, significant reductions in ΔPWVba were reported in ExG-HTN vs. ExG-NT (diff. 0.86 m/s-1) and between ExG-ELE and ExG-NT (diff. 0.76 m/s-1). In conclusion, 6 weeks of CTHIIT+RT reduced arterial stiffness in adults with different blood pressure controls, but with a superior magnitude in HTN patients. Additional benefits include remission of high blood pressure in patients with hypertension.

Keywords: Arterial hypertension; Endothelial dysfunction; Pulse wave velocity; Augmentation index; Ankle brachial index.

 

Citas

ADA. (2023). 5. Facilitating Positive Health Behaviors and Well-being to Improve Health Outcomes: Standards of Care in Diabetes—2024. Diabetes Care, 47(Supplement_1), S77-S110. https://doi.org/10.2337/dc24-S005

Alvarez, C., Campos-Jara, C., Ciolac, E. G., Guimaraes, G. V., Andrade-Mayorga, O., Cano-Montoya, J., Andrade, D. C., Delgado-Floody, P., Alonso-Martínez, A., & Izquierdo, M. (2023). Hypertensive patients show higher heart rate response during incremental exercise and elevated arterial age estimation than normotensive adult peers: VASCU-HEALTH PROJECT Pacientes hipertensos muestran una mayor respuesta de la frecuencia cardíaca durante el ejercicio progresivo en relación con pares adultos normotensos: PROYECTO VASCU-HEALTH. Retos-Nuevas Tendencias En Educacion Fisica Deporte Y Recreacion, 50, 25-32. https://doi.org/10.47197/retos.v50.99716

Ashor, A. W., Lara, J., Siervo, M., Celis-Morales, C., & Mathers, J. C. (2014). Effects of Exercise Modalities on Arterial Stiffness and Wave Reflection: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PloS one, 9(10), e110034. https://doi.org/10.1371/journal.pone.0110034

Åstrand, P.-O. (2003). Textbook of work physiology: physiological bases of exercise. Human kinetics.

Augeri, A. L., Tsongalis, G. J., Van Heest, J. L., Maresh, C. M., Thompson, P. D., & Pescatello, L. S. (2009). The endothelial nitric oxide synthase− 786 T> C polymorphism and the exercise-induced blood pressure and nitric oxide responses among men with elevated blood pressure. Atherosclerosis, 204(2), e28-e34. https://doi.org/10.1016/j.atherosclerosis.2008.12.015

Birk, G. K., Dawson, E. A., Atkinson, C., Haynes, A., Cable, N. T., Thijssen, D. H., & Green, D. J. (2012). Brachial artery adaptation to lower limb exercise training: role of shear stress. Journal of Applied Physiology, 112(10), 1653-1658. https://doi.org/10.1152/japplphysiol.01489.2011

Bowden Davies, K. A., Norman, J. A., Thompson, A., Mitchell, K. L., Harrold, J. A., Halford, J. C., Wilding, J. P., Kemp, G. J., Cuthbertson, D. J., & Sprung, V. S. (2021). Short-term physical inactivity induces endothelial dysfunction. Front Physiol, 12, 659834. https://doi.org/10.3389/fphys.2021.659834

Cade, R., Mars, D., Wagemaker, H., Zauner, C., Packer, D., Privette, M., Cade, M., Peterson, J., & Hood-Lewis, D. (1984). Effect of aerobic exercise training on patients with systemic arterial hypertension. The American journal of medicine, 77(5), 785-790. https://doi.org/10.1016/0002-9343(84)90513-8

Chen, H.-Y., & Chauhan, S. P. (2019). Hypertension among women of reproductive age: Impact of 2017 American College of Cardiology/American Heart Association high blood pressure guideline. International Journal of Cardiology Hypertension, 1, 100007. https://doi.org/10.1016/j.ijchy.2019.100007

Colberg, S. R., Sigal, R. J., Yardley, J. E., Riddell, M. C., Dunstan, D. W., Dempsey, P. C., Horton, E. S., Castorino, K., & Tate, D. F. (2016). Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care, 39(11), 2065-2079. https://doi.org/10.2337/dc16-1728

Farahati, S., Hosseini, S. R. A., Moazzami, M., Daloee, M. H., & Daloee, S. H. (2020). The Impact of High-Intensity Interval Training Versus Moderate-Intensity Continuous Training on Carotid Intima-Media Thickness and Ankle-Brachial Index in Middle-Aged Women. Int J Prev Med, 11, 62. https://doi.org/10.4103/ijpvm.IJPVM_524_18

Forde, C., Johnston, M., Haberlin, C., Breen, P., Greenan, S., Gissane, C., Comyns, T., Maher, V., & Gormley, J. (2020). Low Dose Resistance Exercise: A Pilot Study Examining Effects on Blood Pressure and Augmentation Index Between Intensities. High Blood Pressure & Cardiovascular Prevention, 27(1), 83-91. https://doi.org/10.1007/s40292-020-00362-5

Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., Nieman, D. C., Swain, D. P., & American College of Sports, M. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc, 43(7), 1334-1359. https://doi.org/10.1249/MSS.0b013e318213fefb

Gómez-Rossel, O., & Merellano-Navarro, E. (2024). Efectos del entrenamiento concurrente en indicadores de condición física y calidad de vida de adultos sanos (Effects of concurrent training on indicators of physical condition and quality of life of healthy adults). Retos-Nuevas Tendencias En Educacion Fisica Deporte Y Recreacion, 54, 24-35.

Guimaraes, G. V., Ciolac, E. G., Carvalho, V. O., D'Avila, V. M., Bortolotto, L. A., & Bocchi, E. A. (2010). Effects of continuous vs. interval exercise training on blood pressure and arterial stiffness in treated hypertension. Hypertens Res, 33(6), 627-632. http://dx.doi.org/10.1038/hr.2010.42

Halliwill, J. R. (2001). Mechanisms and clinical implications of post-exercise hypotension in humans. Exerc Sport Sci Rev, 29(2), 65-70. https://doi.org/10.1097/00003677-200104000-00005

Hasegawa, N., Fujie, S., Horii, N., Uchida, M., Kurihara, T., Sanada, K., Hamaoka, T., & Iemitsu, M. (2018). Aerobic exercise training-induced changes in serum C1q/TNF-related protein levels are associated with reduced arterial stiffness in middle-aged and older adults. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 314(1), R94-R101. https://doi.org/10.1152/ajpregu.00212.2017

Heiss, C., Rodriguez-Mateos, A., Bapir, M., Skene, S. S., Sies, H., & Kelm, M. (2022). Flow-mediated dilation reference values for evaluation of endothelial function and cardiovascular health. Cardiovascular Research. https://doi.org/10.1093/cvr/cvac095

Kanaley, J. A., Fenicchia, L. M., Miller, C. S., Ploutz-Synder, L. L., Weinstock, R. S., Carhart, R., & Azevedo, J. L., Jr. (2001). Resting leptin responses to acute and chronic resistance training in type 2 diabetic men and women. Int J Obes Relat Metab Disord, 25(10), 1474-1480. https://doi.org/10.1038/sj.ijo.0801797

Kim, E. J., Park, C. G., Park, J. S., Suh, S. Y., Choi, C. U., Kim, J. W., Kim, S. H., Lim, H. E., Rha, S. W., Seo, H. S., & Oh, D. J. (2007). Relationship between blood pressure parameters and pulse wave velocity in normotensive and hypertensive subjects: invasive study. Journal of Human Hypertension, 21(2), 141-148. https://doi.org/10.1038/sj.jhh.1002120

Kim, H. M., Rhee, T.-M., & Kim, H.-L. (2022). Integrated approach of brachial-ankle pulse wave velocity and cardiovascular risk scores for predicting the risk of cardiovascular events. PloS one, 17(4), e0267614.

Koivistoinen, T., Lyytikäinen, L.-P., Aatola, H., Luukkaala, T., Juonala, M., Viikari, J., Lehtimäki, T., Raitakari, O. T., Kähönen, M., & Hutri-Kähönen, N. (2018). Pulse Wave Velocity Predicts the Progression of Blood Pressure and Development of Hypertension in Young Adults. Hypertension, 71(3), 451-456. https://doi.org/doi:10.1161/HYPERTENSIONAHA.117.10368

Lee, D., Byun, K., Hwang, M.-H., & Lee, S. (2021). Augmentation index is inversely associated with skeletal muscle mass, muscle strength, and anaerobic power in young male adults: a preliminary study. Applied Sciences, 11(7), 3146.

Lobato, N. S., Filgueira, F. P., Akamine, E. H., Tostes, R. C., Carvalho, M. H., & Fortes, Z. B. (2012). Mechanisms of endothelial dysfunction in obesity-associated hypertension. Braz J Med Biol Res, 45(5), 392-400. https://doi.org/10.1590/s0100-879x2012007500058

Low, D. A., Shibasaki, M., Davis, S. L., Keller, D. M., & Crandall, C. G. (2007). Does local heating-induced nitric oxide production attenuate vasoconstrictor responsiveness to lower body negative pressure in human skin? Journal of Applied Physiology, 102(5), 1839-1843. https://doi.org/10.1152/japplphysiol.01181.2006

Molmen-Hansen, H. E., Stolen, T., Tjonna, A. E., Aamot, I. L., Ekeberg, I. S., Tyldum, G. A., Wisloff, U., Ingul, C. B., & Stoylen, A. (2012). Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. European Journal of Preventive Cardiology, 19(2), 151-160. https://doi.org/10.1177/1741826711400512

Munir, S., Jiang, B., Guilcher, A., Brett, S., Redwood, S., Marber, M., & Chowienczyk, P. (2008). Exercise reduces arterial pressure augmentation through vasodilation of muscular arteries in humans. American Journal of Physiology-Heart and Circulatory Physiology, 294(4), H1645-H1650. https://doi.org/10.1152/ajpheart.01171.2007

Ochi, M., Kohara, K., Tabara, Y., Kido, T., Uetani, E., Ochi, N., Igase, M., & Miki, T. (2010). Arterial stiffness is associated with low thigh muscle mass in middle-aged to elderly men. Atherosclerosis, 212(1), 327-332. https://doi.org/10.1016/j.atherosclerosis.2010.05.026

Olea, M. A., Mancilla, R., Martínez, S., & Díaz, E. (2017). Entrenamiento interválico de alta intensidad contribuye a la normalización de la hipertensión arterial. Rev Med Chil, 145(9), 1154-1159.

http://dx.doi.org/10.4067/s0034-98872017000901154

Oviedo, G., Niño, O., Bellomío, C., González, R., & Guerra, M. (2015). Entrenamiento, presión arterial y lípidos en adultos con prehipertensión. Retos: nuevas tendencias en educación física, deporte y recreación(27), 67-72.

https://doi.org/10.47197/retos.v0i27.34350

Pedralli, M. L., Marschner, R. A., Kollet, D. P., Neto, S. G., Eibel, B., Tanaka, H., & Lehnen, A. M. (2020). Different exercise training modalities produce similar endothelial function improvements in individuals with prehypertension or hypertension: a randomized clinical trial Exercise, endothelium and blood pressure. Scientific reports, 10(1), 1-9. https://doi.org/10.1038/s41598-020-64365-x

Pescatello, L. S., Buchner, D. M., Jakicic, J. M., Powell, K. E., Kraus, W. E., Bloodgood, B., Campbell, W. W., Dietz, S., Dipietro, L., George, S. M., Macko, R. F., Mctiernan, A., Pate, R. R., Piercy, K. L., & committee*, F. t. p. a. g. a. (2019). Physical Activity to Prevent and Treat Hypertension: A Systematic Review. Medicine & Science in Sports & Exercise, 51(6), 1314-1323. https://doi.org/10.1249/mss.0000000000001943

Pescatello, L. S., MacDonald, H. V., Lamberti, L., & Johnson, B. T. (2015). Exercise for hypertension: a prescription update integrating existing recommendations with emerging research. Current hypertension reports, 17(11), 1-10.

Pescatello, L. S., Miller, B., Danias, P. G., Werner, M., Hess, M., Baker, C., & Jane De Souza, M. (1999). Dynamic exercise normalizes resting blood pressure in mildly hypertensive premenopausal women. Am Heart J, 138(5 Pt 1), 916-921. https://doi.org/S000287039900321X [pii]

Petermann, F., Durán, E., Labraña, A. M., Martínez, M. A., Leiva, A. M., Garrido-Méndez, A., Poblete-Valderrama, F., Díaz-Martínez, X., Salas, C., & Celis-Morales, C. (2017). Factores de riesgo asociados al desarrollo de hipertensión arterial en Chile. Rev Med Chil, 145(8), 996-1004.

http://dx.doi.org/10.4067/s0034-98872017000800996

Potosí-Moya, V., Paredes-Gómez, R., & Durango-Sánchez, X. (2024). HIIT y su influencia sobre el VO2max en estudiantes de fisioterapia (HIIT and its influence on VO2max in physiotherapy students). Retos-Nuevas Tendencias En Educacion Fisica Deporte Y Recreacion, 54, 616-624.

Ramírez-Vélez, R., Castro-Astudillo, K., Correa-Bautista, J. E., González-Ruíz, K., Izquierdo, M., García-Hermoso, A., Álvarez, C., Ramírez-Campillo, R., & Correa-Rodríguez, M. (2020). The effect of 12 Weeks of different exercise training modalities or nutritional guidance on cardiometabolic risk factors, vascular parameters, and physical fitness in overweight Adults: cardiometabolic high-intensity interval training-resistance training randomized controlled study. The Journal of Strength & Conditioning Research, 34(8), 2178-2188.

Ramírez-Vélez, R., Hernández-Quiñones, P. A., Tordecilla-Sanders, A., Álvarez, C., Ramírez-Campillo, R., Izquierdo, M., Correa-Bautista, J. E., Garcia-Hermoso, A., & Garcia, R. G. (2019). Effectiveness of HIIT compared to moderate continuous training in improving vascular parameters in inactive adults. Lipids in health and disease, 18(1), 42. http://dx.doi.org/10.1519/JSC.0000000000003533

Ring, M., Eriksson, M. J., Zierath, J. R., & Caidahl, K. (2014). Arterial stiffness estimation in healthy subjects: a validation of oscillometric (Arteriograph) and tonometric (SphygmoCor) techniques. Hypertension Research, 37(11), 999-1007. https://doi.org/10.1038/hr.2014.115

Román, C., Fernández, M., Acevedo, M., Alarcón, G., Araya, M. V., Barquín, I., Barrenechea, J., Díaz, H., Lama, D., Lanas, F., López, R., Oliveros, M. J., Prat, H., Rouliez, K., Santibáñez, C., Serón, P., Troncoso, E., & Varleta, P. (2019). Ejercicio: una herramienta clave en la prevención cardiovascular. Consenso de la Sociedad Chilena de Cardiología y Cirugía Cardiovascular y de la Sociedad Chilena de Kinesiología en Cardiología y Cirugía Cardiovascular. Revista chilena de cardiología, 38, 149-157. http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-85602019000200149&nrm=iso

Ross, M., Kargl, C. K., Ferguson, R., Gavin, T. P., & Hellsten, Y. (2023). Exercise-induced skeletal muscle angiogenesis: impact of age, sex, angiocrines and cellular mediators. Eur J Appl Physiol, 123(7), 1415-1432. https://doi.org/10.1007/s00421-022-05128-6

Thijssen, D. H., Bruno, R. M., van Mil, A. C., Holder, S. M., Faita, F., Greyling, A., Zock, P. L., Taddei, S., Deanfield, J. E., & Luscher, T. (2019). Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. European Heart Journal, 40(30), 2534-2547. http://dx.doi.org/10.1093/eurheartj/ehz350

Thompson, W., Gordon, N., & Pescatello, L. (2021). Manual ACSM para la valoración y prescripción del ejercicio (3ª edición ed.).

Whelton, P. K., Carey, R. M., Aronow, W. S., Casey, D. E., Collins, K. J., Himmelfarb, C. D., DePalma, S. M., Gidding, S., Jamerson, K. A., Jones, D. W., MacLaughlin, E. J., Muntner, P., Ovbiagele, B., Smith, S. C., Spencer, C. C., Stafford, R. S., Taler, S. J., Thomas, R. J., Williams, K. A., . . . Wright, J. T. (2018). 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension, 71(6), 1269-1324. https://doi.org/doi:10.1161/HYP.0000000000000066

WHO. (2000). Obesity: preventing and managing the global epidemic. 894:i–xii, 891–253.

Wilkins, B. W., Minson, C. T., & Halliwill, J. R. (2004). Regional hemodynamics during postexercise hypotension. II. Cutaneous circulation. Journal of Applied Physiology, 97(6), 2071-2076.

Yan, J., Cai, X., Zhu, G., Guo, R., Yan, H., & Wang, Y. (2022). A non-invasive blood pressure prediction method based on pulse wave feature fusion. Biomedical Signal Processing and Control, 74, 103523. https://doi.org/https://doi.org/10.1016/j.bspc.2022.103523

Descargas

Publicado

2024-07-01

Cómo citar

Alvarez, C., Peñailillo, L., Ibacahe, P., Tuesta, M., Jerez-Mayorga, D., Domaradski, J., Andrade, D. C., Andrade-Mayorga, O., Cano-Montoya, J., & Delgado-Floody, P. (2024). Ejercicio Físico es efectivo para la rehabilitación de la presión y rigidez arterial en adultos con hipertensión (Exercise training is effective for arterial stiffness and blood pressure rehabilitation in hy-pertensive adults). Retos, 56, 301–311. https://doi.org/10.47197/retos.v56.104740

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a

1 2 > >>