
 

 

 
Psicológica (2011), 32, 107-132. 

Item calibration in incomplete testing designs 

Theo J.H.M. Eggen
*
 & Norman D. Verhelst** 

*Cito/University of Twente, The  etherlands 

**Cito, The  etherlands 

 

This study discusses the justifiability of item parameter estimation in incomplete testing designs in item 

response theory. Marginal maximum likelihood (MML) as well as conditional maximum likelihood 

(CML) procedures are considered in three commonly used incomplete designs: random incomplete, 

multistage testing and targeted testing designs. Mislevy and Sheenan (1989) have shown that in 

incomplete designs the justifiability of MML can be deduced from Rubin's (1976) general theory on 

inference in the presence of missing data. Their results are recapitulated and extended for more situations. 

In this study it is shown that for CML estimation the justification must be established in an alternative 

way, by considering the neglected part of the complete likelihood. The problems with incomplete designs 

are not generally recognized in practical situations. This is due to the stochastic nature of the incomplete 

designs which is not taken into account in standard computer algorithms. For that reason, incorrect uses of 

standard MML- and CML-algorithms are discussed. 

 

 

Introduction 

 Within the framework of item response theory (IRT) item calibration involves the estimation 

of the item parameters in the chosen IRT model. For these so-called scaling procedures often data 

gathered in incomplete designs are used. In item banking studies the researcher frequently decides to 

administer only subsets of the total available item pool to the available (sampled) students. 

Sometimes there are just practical reasons for using incomplete designs, for example because of 

limited testing time not all the available items can be administered to every student. However, often 

efficiency is the motivating factor for building incomplete designs. Efficiency in item calibration is 

gained when (a priori) knowledge about the difficulty of the items and the ability of the students is 

used in allocating students to subsets of items. In equating studies, the incomplete designs is mostly 

a starting point, because only partly overlapping tests are administered to different groups of 

students.  

 Algorithms for item calibration which allow for incomplete testing designs are implemented 

in several computer programs. For example, BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 

1996), uses the marginal maximum likelihood (MML) approach in the  one-, two- and three-

parameter logistic test model and OPLM (Verhelst, Glas, & Verstralen, 1995), uses conditional 

maximum likelihood (CML) as well as MML procedures in general one parameter logistic models. 

The application of these or similar computer programs in item banking, multistage testing, adaptive 

testing and equating studies is common psychometric practice. In these applications, however, some 
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problems with incomplete designs are not generally recognized. This is due to the ignorance of the 

consequences of the stochastic nature of the incomplete designs which is not taken into account in 

these computer algorithms. In particular this is the case in equating studies where item calibration in 

incomplete designs as studied here is often called concurrent calibration and is then compared with 

linking on the same scale separately calibrated tests with data from complete designs. (see e.g., 

Hanson & Béguin, 2002).  

 In this study (concurrent) calibration procedures in incomplete testing designs are reviewed. 

The statistical approach of use imputation techniques (Little & Rubin, 1987) in the handling of 

missing data and subsequently analysing complete data will not be considered in this study. Here, 

the likelihood approach, in which as well observed as missing data are modelled, will be studied. 

The justification of applying MML and CML procedures in the incomplete designs will be studied. 

 For convenience, the one-parameter logistic test model for dichotomously scored items 

(Rasch, 1980) will be used for illustrative purposes. After reviewing IRT item parameter estimation 

in general, Rubin's (1976) concepts and theory on inference in the presence of missing data are 

summarized. Next, the applicability of this theory in MML as well as CML item calibration will be 

discussed. This will be elaborated for three commonly used incomplete design structures. For MML 

estimation, Mislevy and Wu (1996), with an emphasis on the estimation of person parameters and 

Mislevy and Sheenan (1989), focussing on the use of collateral information, have used the approach 

as presented here. The MML results in this study are partly recapitulations of their work and are 

extended to other situations. The results for the justification  of CML estimation of the item 

parameters in incomplete designs are necessarily deduced via a different approach. 

 

Item Response Theory 

 In IRT we consider the random vector, the response pattern ( )
ij

X=X , 1,...,i n= ; 

1,...,j K= , where 
ij

X is the response of student i  to item j . With dichotomously scored items 

1
ij

X =  if the answer is correct and 0
ij

X =  if the answer is not correct.  

 The one-parameter logistic model has as its basic equation (Rasch, 1980) 

 

θ ,β

exp((θ β ) )
P( ) ( )

1 exp[(θ β ) i j

i j ij

ij ij ij

i j

x
X x P x

−
= = =

+ −
,        (1) 

 

where {0,1}
ij

x ∈ , {1,..., }i n∈  and {1,..., }j k∈ . 

The distribution of 
ij

X , denoted by 
θ ,β

( )
i j ij

P x , follows the binomial distribution in which θ
i
 is 

the ability parameter of student i  and β
j
 the difficulty parameter of item j . 

 By the usual assumptions of (local) independence the probability of the response pattern is 

given by (with θ (θ ), 1,...,i i n= = and β ( ), 1,...,j j nβ= = ) 
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θ , θ ,β
( ) ( )

i jii i j
ijPP x P x∏ ∏∏= =

βθ,β
.         (2) 

 

 Calibrating an item pool involves estimating the item parameters β and testing the validity of 

the model. In IRT maximum likelihood estimation is common, that is the probability of the  

observed response pattern =X x , or the likelihood function 

 

( , ; ) ( )L P= θ,ββ θ x x  

 

is maximized with respect to the parameters β  and θ . It is well known that because of the incidental 

parameters θi  in the model this does not lead to consistent estimates of the parameters, but in 

general two approaches are known to avoid this problem: CML and MML estimation. 

 

Conditional Maximum Likelihood Estimation 

If it is possible to construct a sufficient statistic ( )iS X  for the incidental parameter θi , in the 

presence of the item parameter β , we can factor the probability of the response pattern as 

, ,
( ) ( | ( )). ( ( ))

ii i i
i

P P x s x P s xθ= Π
θ β β β
x ,         (3) 

 

In (3) 
,

( ( ))
i i

P s xθ β
is the distribution of the sufficient statistic ( ), 1,...,iS X i n=   And the first 

factor ( | ( ))
i i

i
x s xPΠ

β
, is the simultaneous conditional probability of the observed responses x , 

which does not depend on the ability parameters because of the sufficiency of ( )iS X  for θi . In CML 

estimation we then proceed estimating the item parameters by just maximizing this conditional 

likelihood function with respect to β : 

 

( ;( | ) ( | ( ))
c i i

i
L P x s x= Π

β
β x s(x) . 

 

 In CML estimation of the item parameters only random variations of the observations, fixing 

(given) the values of the conditioning statistics ( )is x  are considered. The justification of this 

depends on whether all random variation that is relevant to the problem (here estimating the item 

parameters β ) is in this reduced frame of reference. This is easily seen to be heavily dependent on 

the properties of the neglected part of (3). If the distribution of the sufficient statistic ( )is x  would be 

completely independent of the item parameters β , the justification would be obvious. However this 

condition is not fulfilled in our situation. But discarding this term is justified because Andersen 

(1973) has shown that the resulting CML estimators of β  are, under mild regularity conditions, 
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consistent, and asymptotically normally distributed and efficient. Furthermore, in Eggen (2000) it 

was shown that the possible loss of information in CML estimation, by neglecting the information on 

β  in the distribution of ( )s x , is very small already at short test lengths. A major feature of CML 

estimation of the item parameters is that it is valid (i.e., having the above statistical properties) 

irrespective of any assumptions on the distribution of the ability of the students taking the test. The 

individual parameters are only part of the factor in the total likelihood which is neglected. 

 

Marginal Maximum Likelihood Estimation 

In MML estimation, model (2) is extended by assuming that the ability parameters θi  are a 

random sample from a population with probability density function given by )θ(γg , with γ  the 

(possibly vector valued) parameter of the ability distribution. Thus the response pattern X  well as 

the ability θ  are considered random variables here. The θi  are not as before individual person ability 

parameters, but realizations of the unobservable random variable θ . In MML we consider the 

marginal distribution of the response pattern X , 

 

, ,
( ) ( ,θ) θ ( θ ) (θ ) θ

i i i i
i

P P d P x g d= ∫ = Π ∫
β γ β γ β γ
x x ,       (4) 

 

where 
,

( ,θ)P
β γ
x  is the simultaneous distribution of the response pattern X  and the ability θ . 

β
( θ ) ( θ )

ji i ij i
i

P P x= Π ∫
β
x is the IRT model as in (2), giving the probability of a response vector i of 

person , with ability iθ . 

 In MML estimation the item parameters β  are simultaneously estimated with the parameter 

γ  of the ability distribution by maximizing the marginal probability of the observed response pattern 

x  (the marginal likelihood function) with respect to the parameters, that is, 

 

( , ; ) ( |θ ) (θ ) θ
m i i i i

i
L P x g d= Π ∫

β γ
β γ x .         (5) 

 

 The consistency of the item parameter estimators with MML can be deduced from the work 

by Kiefer and Wolfowitz (1956). In practice, the most popular approach here is to assume that the 

ability distribution of θ  is normal with 2(µ,σ )=γ . Bock and Aitkin (1981) were the first to give 

computational procedures for maximizing (5) using the EM-algorithm. 

 

Inference and Missing Data 

 Rubin (1976) and Little and Rubin (1987) present a general framework for inference in the 

presence of missing data. Here their defined concepts and some of the results are summarized. First, 

some notations and definitions. 
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Let 1( ,..., )mU U=U  be a vector random variable with probability density function 
τ
( )f u , with 

a vector parameter τ , on which we want to draw inferences on the basis of the data, a sample 

realization u . Assume for convenience that knm ⋅= , with k  the number of variables and n  the 

number of persons sampled. In the presence of missing data a vector random design variable, or 

missing data indicator, 1( ,..., )mM M=M  is defined, indicating whether a variable 
j

U , is actually 

observed, 1=jm , or not observed, 0=jm . The observed value of ( )M m  effects a partition of the 

vector random variable U  and of its observed value: ( , )obs mis=U U U  and ( , )obs mis=u u u . The sets 

of indices of observed and not observed variables are { 1}jobs j m= =  and { 0}jmis j m= = . 

 In Rubin's (1976) theory the conditional distribution of the missing data indicator given the 

data has a key role: 

 

φ φP ( | ) ( | )h= = =M m U u m u , 

 

which is defined as the distribution corresponding to the process that causes the missing data, with 

φ  a possibly vector valued parameter. In general, φ can be dependent on the parameter of interest  

τ : they could have common or functionally related elements. 

 The general problem in inference in the presence of missing data is that we have a sample 

realization of M  and obsU  and we want to infer on the parameter τ  of the distribution of the only 

partially observed U . In the presence of missing data, the basis for inference on τ  should be the 

joint distribution of M  and obsU : 

 

τ,φ τ φ
( , ) ( ) ( | )

mis mis

mis mis
u

f d f h d∫ = ∫ ⋅
u

u m u u m u u .        (6) 

 

 Because we are only interested to infer on the parameter τ of the distribution of the partially 

observed U , a possible approach could be to ignore in the inference the process that causes the 

missing data. Following Rubin (1976), ignoring the process that causes missing data means: (a) 

fixing the random variable M at the observed pattern of missing data m and (b) assuming that the 

values of the observed obsU  data are realizations of the marginal density of obsU : 

τ τ,φ
( ) ( , )

mis

obs mis
u

f f du= ∫u u m .          (7) 

 

When we ignore the process that causes the missing data, not all possible random variation in 

the data due to sampling of M  and obsU  is considered, but only random variation due to obsU  fixing 

the random variable M at the particularly observed pattern m . The generally more convenient form 

(7) is used instead of (6) in the inference onτ .  
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 It will be clear that ignoring the missing data process does not necessarily lead to a correct 

inference on τ . Firstly, we possibly disregard the influence of φ  on τ : possible restrictions, due to 

φ θ , are not taken in account in the inference on τ . Secondly, it is understood that the data obsu  are 

in fact no realizations of (7) but of the conditional density of obsU  given the random variable M  

took the fixed value m : 

 

τ,φ τ φ

τ,φ

φ τ φ

( , ) ( ). ( | )
( | )

( ) ( ). ( | )
mis mis mis

f u m f u h m u
f u m du du du

f m f u h u m d u
∫ = =

∫∫ ∫ ,     (8) 

 

which is in general not equal to (7). 

 We now specify Rubin’s (1976) sufficient conditions under which ignoring the process that 

causes the missing data yields the correct direct likelihood inference about τ . By direct likelihood 

inference is meant inference on parameter(s) based on comparison of likelihoods as e.g. the 

determination of a maximum likelihood estimator and likelihood ratio tests. The sufficient 

conditions are on the distribution φ ( | )h m u . Define: 

 

1. The missing data are missing at random (MAR) if for each value of φ  

 

φ φ( | , ) ( | )obs mis obsh m u u h m u=  for all misu , 

that is, the missingness of the data does not depend on the not observed values of misu , but may 

depend on the observed values of obsu . 

2. The missing data are missing completely at random (MCAR) if for each value of φ  

 

φ φ( | , ) ( )obs mish m u u h m=  for all misu  and obsu . 

 

Note that MCAR implies MAR. 

3. The parameter φ  is distinct (D) from τ  if the joint parameter space of (φ, τ)  is the Cartesian 

product of the parameter space of φ  and the space of τ . Distinctness means that all possible values 

of φ  are possible in combination with all possible values of τ . 

 

 These three definitions enable us to state Rubin's (1976) ignorability principle: if both MAR 

and D hold, ignoring the process that causes the missing data gives correct direct likelihood 

inferences about τ . 

 

This means that instead of using the full-likelihood 
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, ,
( , ; , ) ( , ) ( , ) ,

mis

obs obs mis

u

L u m f u m f u m duτ ϕ τ ϕτ ϕ = = ∫        (9) 

 

the simple likelihood function 

 

τ τ
(τ; ) ( ) ( )

mis

obs obs mis
u

L u f u f u du= = ∫           (10) 

 

can be used for inferring on τ . Ignoring the process that causes missing data is of course also 

justified if the stronger condition MCAR, instead of MAR, (and D) is met. 

 It is noted that these conditions only guarantee correct direct likelihood inferences as 

determining the correct maximum likelihood estimate. It is not guaranteed that the resulting 

estimates in using (9) or (10) will have the same statistical properties, such as consistency or 

asymptotic normality. In general, then stronger conditions have to be fulfilled (Rubin, 1976). 

 

Incomplete Calibration Designs 

 Using incomplete testing designs is very common in the application of IRT. Although many 

variants are possible, one of three calibration design structures is commonly used: random 

incomplete designs, multistage testing designs and targeted testing designs. The following notation 

and assumptions are used to describe these designs. 

 We have T  test forms, indexed by 1,...,t T= . From the total item pool of k  items, subsets of 

, ( 1,..., )tk t T=  items are assembled in the test forms. 

 We assume that there is overlap in items between the test forms. Via the linking items the 

item pool can be calibrated on the same scale. Fischer (1981) gives the exact conditions that have to 

be fulfilled for the existence and uniqueness of the item parameter estimates in incomplete designs 

using CML in the Rasch model. In practice, these conditions are almost always met if there are some 

common items in the test forms. In MML estimation the linking in incomplete designs is also mostly 

established via common items. Although, for MML estimation Glas (1989) has shown that in the 

special case where we do not have a linked design but assume a common ability distribution for all 

sampled students the parameters are estimable. We assume that every student takes only one test 

form and for every student taking items from the pool we define a design or item indicator vector 

with as many elements as there are items in the item pool ( )k . The item indicator variable for every 

student iR  can take T values: 

 

(1 ,0 )
t tt t k k kperm −=r , ( 1,..., )t T= .         (11) 

 

Each value of the design vector tr is a permutation of the vector (1 ,0 )
t tk k k− , indicating that 

there are tk  values 1 at the elements indexed by the items in the administered test t , and tk k−  

values 0. 
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 It is noted that the missing data indicator M  is strongly related to the item indicator R . In 

our applications it is always true that R M⊂ . But R  concerns only the indication whether items are 

observed, while M  also concerns the observation or missingness of other variables considered in a 

problem. More specifically, when the ability θ  is considered as a random variable as in MML 

estimation (5), we will use the indicator variable M , having a value zero for all realizations of θ . 

 

Random Incomplete Designs 

In random incomplete designs the researcher decides which test form is taken by which 

students without using any a priori knowledge on the ability of a student. Every student has an a 

priori known chance of taking one of the T  test forms. In these designs the test forms are often 

assembled from the item pool in such a way that the forms have an equal number of items and are 

parallel in content and difficulty. A test form can be randomly assigned to a student so that every 

student has an equal chance of getting a particular test form. Or more generally a student gets a test 

form with a known probability tφ  such that t
1

φ 1
T

t=
∑ = . The distribution of the item indicator variable 

iR  is given by: 

 

P( ) φ
i t t

R r= =  with ( 1,..., ), ( 1,..., ).t T i n= =         (12) 

 

Multistage Testing Designs 

In multistage testing designs the assignment of students to subsets of items from the total item 

pool in a testing stage is based on the observed responses in the former stage. A typical example is 

given in Figure 1. All students in the sample take the first stage test which is of medium difficulty. 

This (part of the) test is called the routing test. Students with high scores on the routing test are 

administered a more difficult subset of items from the pool in the next stage and students with low 

scores a more easy subset. The same procedure is possibly continued in next testing stages. 

 

 Items   

students 

1 1s c<  

2,1 2,1s c<  
      

2,1 2,1s c≥  
     

 

1 1s c≥  

 
2,2 2,2s c<  

     

2,2 2,2s c≥  
     

 1st stage 2nd stage 3rd stage 

 

Figure 1. Example of a multistage testing design. 
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In Figure 1, 1s  indicates the score on the items of the first stage (routing) test, and 2,1s  is the 

score on a second stage (routing) test which content depends on the score on the first routing test. In 

each stage the score is compared to a cut-off .c , on which it is decided which items are administered 

next. In this example, considering the total data matrix, the total number of tests T  is 4. 

 Multistage testing was introduced (Lord, 1971) for efficiently measuring the ability of 

students, but it is understood that the underlying principle can also be applied in designs for the 

calibration of the items. A limiting case of multistage testing is computerized adaptive testing, where 

the stages have a length of only one item: after every item, the next item administered is selected on 

the basis of the result on the previously administered items. 

 In a multistage testing design, as in a random incomplete design, the item indicator variable 

for every student 1R  can take as many values as there are tests T  (see (11)). The distribution of 1R  

has always the following form: 

 

, ,
P( | ) φ ( )

i t obs i t obs i
R r x x= = , with ( 1,..., ), ( 1,..., )t T i n= = .      (13) 

 

If a function of observed item scores ,obs ix  meets a criterion for getting test t , the item 

indicator variable 1R  takes the value tr  with probability φt . If the criterion is not met the probability 

is 1-φt . It should be understood that in a multistage testing design the probability of a certain design 

is not constant for all values of ,obs ix , because in that case the design is random incomplete. 

 

Example 1. 

We have a routing test consisting of 3 items with 
1 2 3

β β β 0= = = . With a total score of 0 or 1 

on these 3 items an easier test of 4 items with parameters 
4

β 1.25= − , 
5

β 1.0= − , 
6

β 0.5= −  and 

7
β 0.5= −  is administered. When the score on the routing test is 2 or 3, a harder test, having two 

items in common with the easier, with the parameters 
6

β 0.5= − , 
7

β 0.5= , 
8

β 1.0=  and 
9

β 1.25=  is 

administered. The functions 
,

φ ( )
t obs i

x  (13) can then be defined as: 1 ,φ ( ) 1obs ix =  if 
3

1

1
ij

j

x
=
∑ ≤ , and 

2 ,
φ ( ) 1

obs i
x =  if 

3

1

1
ij

j

x
=
∑ > , where test 1 is the easier test and test 2 the harder test.  

 

Targeted testing designs 

In targeted testing designs the structure of the design is determined a priori on the basis of 

background information, say values of a random variable Y  of the students. This background 

variable is usually positively related to the ability. Students with values of Y  which are expected to 

have lower abilities are administered easier test forms, and students with values of Y  expected to 

have higher abilities are administered the more difficult forms. As in multistage testing designs gains 

in precision of the estimates are to be expected. An example of a variable often used in these designs 

is the grade level of the student. 
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 We will assume that the variable Y  of the students is categorical (or categorized), taking (or 

distinguishing) T  values: 1, , ..., Ty y . In targeted testing, for each value of Y  a different subset from 

the total item pool is administered to the students. The variable Y  can, besides for the assignment of 

the items to the students, also play a role in the sampling of the students. We can distinguish two 

situations. First, the background variable Y  is only used in the assignment of items or tests to 

students and not in the sampling of students. Second, the Y  is used in the sampling of students as 

well as in the assignment of tests to students. 

 In the first situation the role of using Y  is limited to increase the precision of the parameter 

estimates of the items to be calibrated. In this situation there is no explicit interest in the variable Y  

itself. There is, for instance, no interest to have estimates of the parameters of the ability distribution 

for each distinguished level of Here the students are sampled from one population with no regard to 

the values of Y . 

 In the second situation, the background variable also plays a role in sampling the students. In 

this case there is an explicit interest in the variable itself. A situation often occurring is that Y  is the 

stratification variable in the sampling of students from the total population. Often the sampling 

proportions within the strata are not the same in the total population and one is explicitly interested 

in estimates of the ability distribution of the different strata and possibly, but not necessarily, in the 

total population. In this case, unlike the first situation, the sampled students can in general not be 

considered to be a sample from one population but are samples from a total population divided in 

subpopulations of interest. 

 Where relevant we will distinguish these two targeted testing situations: (a) targeted testing 

with student sample from one population (TTOP), and  (b) targeted testing with student samples 

from multiple (sub)populations (TTMP). 

 In targeted designs the item indicator variable iR  for every student can again take as many 

values as there are tests. The distribution of iR , is given by 

 

P( | ) φ ( )
i t i t t i

R r y y y= = = , ( 1,..., )t T= .        (14) 

 

For any (distinguished) value of the background variable Y  here is a fixed probability that a 

certain test is administered. An example is the gender of the student. A boy 1iy =  then gets with a 

probability 1φ ( 1)iy =  test 1 and a girl with probability 1φ ( 2)iy = . Similar probabilities can be 

specified for a second test. In practice, often φ 1,t =  which means that given the value iy , a specific 

test is administered. The formal resemblance between a targeted testing (14) and a multistage testing 

design (14) is noted. But the difference is also clear: In a targeted testing design iy , can be any 

measured characteristic of a student, with the exception that it is not (based on) responses to items 

whose parameters are to be estimated as we have in multistage testing (14). 
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Item Calibration and Missing Data 

 Although item calibration in incomplete testing designs is common in psychometric practice 

and modern computer programs can analyze incomplete designs, it is commonly assumed that the 

stochastic nature of the item indicator variable R  does not play a role in the calibration. In 

implemented computer algorithms the design variable value is fixed at the observed value and only 

random variations in the observed item responses are considered. One could say that the ignorability 

principle is assumed to hold. In this section we will explore the justifiability of this practice in the 

incomplete calibration designs described in the former section. We will treat marginal as well as 

conditional estimation of the item parameters in these designs. We assume that we have tested a 

group of n  students, for which the observed and missing variables are notated with ,obs iU  and ,mis iU , 

( , )obs mis=U U U   with ,1 ,( ,..., )obs obs obs n=U U U  and  ,1 ,( ,..., )mis mis mis n=U U U . The missing data 

indicator is 1( ,..., )nM M=M , in which every element iM  is a vector of the same length as there are 

variables (observed and unobserved). 

 

The Marginal Model and Missing Data 

Using the same approach as Mislevy and Sheenan (1989), the ignorability conditions for the 

design variable in incomplete designs for MML item parameter estimation can be checked.  We will 

give next the results for complete, random incomplete, multistage and targeted testing designs.  

 

 MML in complete, random incomplete and multistage testing designs. First we note that the 

justification of using MML for complete data, see (4) and (5), can also be deduced from the general 

framework of Rubin for inference in the presence of missing data. Complete data MML can be 

described as a procedure in which we have missing data and the ignorability principle is applied in 

likelihood inference. This is readily seen as follows. The variable on which we want to base our 

inference on is 
1 1

( ,θ) ( ,θ ,..., ,θ )
n n

U X X X= =  in which iX  is as before the random answer vector of 

student i  on the k  items administered. The parameter to be estimated is τ (β, γ)= . In the complete 

data situation the iX  are always observed and the θi  are always missing. So we have for every 

student i  a degenerated design distribution, that equals its item indicator distribution 

 

P( (1 ,0)) P( (1 )) 1
i k i k

M R= = = = , ( 1,..., )i n= . 

 

The partition which the observed design variable im  effects is 

 

,obs i i
U X= and 

,
θ

mis i i
U = , ( 1,..., )i n= . 

 

Because the parameter space of the distribution of M  is empty and MCAR is clearly met, the 

marginal distribution of obs
U  (here X ) can be used by the ignorability principle for correct 

likelihood inference:  
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τ β,γ β γ
( ) ( ,θ) θ ( |θ )g (θ ) θ

mis

mis i i i i
u i

f u du P x d P x d∫ = ∫ = ∏ ∫ . 

 

Which is identical to (5). 

 In random incomplete designs and multistage testing designs the ignorability conditions are 

also fulfilled. In Table 1 we give for these designs and for the complete testing design respectively 

the observed and unobserved variables and the design distribution. 

The design distribution in random incomplete and in multistage testing design follow 

respectively from (12) and (14). In random incomplete designs the MCAR condition is fulfilled and 

in multistage testing design the MAR condition. In both designs the D condition is clearly met. 

Therefore ignorability holds in these designs and MML can be applied using the marginal 

distribution of the observations. This can readily be checked by considering, e.g in the multistage 

testing design, the distribution of ),( , MU iobs needed for the full likelihood: 

τ,φ β,γ,φ
θ

( , ) ( , ,θ, ) θ
mis mis

mis obs mis mis
u x

P u m du P x x m dx d∫ = ∫ ∫ =  

 

β,γ φ
θ

( , ,θ). ( | , ,θ) θ
mis

obs mis obs mis mis
x

P x x h m x x dx d∫ ∫ =  

 

φ β,γ
θ

( | ) ( ,θ) θ =obs obsh m x P x d∫           (15) 

 

φ , β , γ
θ

( | ) ( ,θ ). (θ ) θ
i

i obs i obs i i i i
i i

h m x P X g d∏ ∏ ∫ . 

 

 

 

Table 1. Variables in incomplete testing designs 

Design 
iobsU ,  imisU ,  ),|( ,,φ imisiobsi UUmh  

complete  
iX  

iθ  1))1((P))0,1((P ==== kiki RM  

random incomplete 
iobsX ,  

iimisX θ,,  ttiti rRrM φ))((P))0,((P ====  

multistage 
iobsX ,  iimisX θ,,  )(φ)|(P)|)0,((P ,,, iobstiobstiiobsti XXrRXrM ====  
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In (15) the third equality holds because of MAR resulting in a factorization of the full 

likelihood in a term independent of (β,γ)  and the marginal distribution of obsX . So just considering 

the marginal distribution of obsX  will thus give the correct maximum likelihood estimates of β  and 

γ . 

Note that if we indicate by tn  the number of students taking test t  with 1

T

i tn n=Σ =  and define 

( )
β

t
 as the tk -vector of the item parameters of the items in test we can rewrite the second factor of 

(15) as  

 

( )
i i

β , γ β , γ
1 θ 1 1 θ

( | θ ). (θ ) θ ( | θ ). (θ ) θ
t

t

nn T

obs i i i i obs i i i i
i t i

P x g d P x g d
= = =
∏ ∫ = ∏∏ ∫ . 

The marginal likelihood in the incomplete design case is thus written as a product of T

complete data marginal likelihoods. 

 

 MML in targeted testing designs. Mislevy and Sheenan (1989) have presented a general 

discussion on the effect of using or not using (ignoring) the background information of the students 

in MML item calibration. In complete testing designs they consider the two different roles of the 

background variable Y  can play in the sampling: students can be sampled from one population, or 

(stratified) from multiple subpopulations. In targeted testing designs also the same two roles of Y  

can be distinguished. As mentioned before in TTOP, Y  has no role in the sampling of the students, 

but depending on the values of Y  different subsets of the item pool are administered and in TTMP 

Y  has both a role in the sampling of the students and in the assignment of items to students. Mislevy 

and Sheenan (1989) have only considered the latter situation. Their results will be summarized and 

will be compared and completed with the results in the TTOP situation. 

 Assume Y  to be a categorical (or categorized) variable taking one of L  values, establishing a 

division of the total student population in L  subpopulations. The value of Y  for student i  is defined 

as ( ,..., )i il iLy y y=  with 1=
liy  if student i  is associated with subpopulation l  and 0  if not, 

L,...,1=l . If 1=
liy  we will alternatively write )(lyyi = . The ability distribution )θ(γg  of the total 

population in this case can be expressed as a finite mixture of L  subpopulation ability distributions: 

 

γ γ
1 1 1

(θ) (θ, ) (θ| ).P( ) (θ).π
L L L

( ) ( ) ( )g P Y y P Y y Y y g
= = =

= ∑ = = ∑ = = = ∑
l

l l l

l
l l l

,        (16) 

 

in which y
l
 is the possibly vector valued parameter of the ability distribution in subpopulation l  

and 
l

π  the proportion of subpopulation l  in the total population. 

In complete testing designs using or not using Y  in MML item calibration is equivalent with 

considering Y  as observed or missing data. In Mislevy and Sheenan (1989) checks of Rubins 

ignorability conditions in this situation are given. Summarized the results are: Y  using in MML item 

calibration makes it possible, independent of the sampling role, to estimate the item parameters 

1(β ,...,β )k=β  and the population parameters 
1 1

γ (γ ,.., γ ,.., γ , π ,.., π ,.., π )
L L

=
l l

simultaneously. The 
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justifiability of ignoring Y  depends on the sampling role of Y  in the design: correct estimates of the 

item parameters and the population parameters in MML item calibration are guaranteed only when 

we have a random sample from one population. In case we have samples from multiple 

subpopulations, ignoring Y  may lead to wrong estimates.  

 In targeted testing designs we first consider the TTOP situation. In TTOP we have a random 

sample from the total population with ability distribution )θ(γg  (16). For students with value )(ly  of 

iY  denote with ( )β
l

 the 
l

k -vector of the item parameters of the items administered and with 
l

r  the 

accompanying value of the item indicator variable (see (11)). Without loss of generality we may 

assume that the total number of distinguished subpopulations is the same as the number of different 

tests administered: LT = . If we use the background information in MML calibration in this case the 

partition which the observed design variable im  effects is: 

 

, ,

, ,

( , )
 ,( 1 )

( ,θ )

obs i obs i i

mis i mis i i

U X Y
i ,...,n

U X

= 
== 

. 

 

and the distribution of the missing data indicator follows from (14): 

 

L)1,...,( ,φ)|)0,1,((P )( ==== l
l

l

l
yYrM ii .        (17) 

 

Note that the design vector iM  variable has one element more compared to the situations in 

complete, in random incomplete and in multistage testing indicating the observation of iY . The 

thk )2( +  element indicates iY , the θ)2( thk + . From (17) it is easily seen that the conditions for 

ignorability MAR (depending only on observed responses) and D are fulfilled. So the correct 

likelihood inference can be based on the marginal distribution of the observations. For a randomly 

sampled student we have: 

 

,

( ) ( )

β,γ , β,γ , , ,
θ

( , ( , , ,θ ) θ
mis i i

obs i i obs i mis i i i i mis i
x

P x Y y P x x Y y d dx= = ∫ ∫ = =l l
 

 

( )

( ) ( ) ( )

β ,
θ

( | ,θ ) (θ | ) P( ) θ
i

obs i i i y i i i iP x Y y P Y y Y y d∫ = = = =
l

l l l
 

 

( )β ,
θ

( | θ ) (θ ). θ
i

obs i i y i iP x g dπ∫ =
l l

l
 

 

{ }( )β ,
1 1 θ

π . ( | θ ) (θ ) θ
i

i

i

y
L L

y

obs i i y i i
P x g d

= =
∏ ∏ ∫

l

l

l l
l

l l

.        (18) 
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The likelihood of the total sample is given by: 

( )

β,γ ,
1

(β, , π; , ) ( , )
n

obs obs i i
i

L y x y P x Y y
=

= ∏ = =l         (19) 

{ }( )β ,
1 1 1 1 θ

π . ( | θ ). (θ ) θ
i

i

i

y
n L n L

y

obs i i y i i
i i

P x g d
= = = =
∏∏ ∏∏ ∫

l

l

l l
l

l l

. 

 

From (19) it is seen that the likelihood function consist i. of a term that depends only on the 

proportions π
l
 of the subpopulations in the total population, and ii. a term which is a product of L  

ordinary marginal likelihood functions. This is because there is always exactly one l  for which 

1=
liy , with the understanding that they not all contain the same item parameters. Standard 

maximum likelihood estimates π̂ , 1,..., L=
l
l  of the proportions can be obtained from the first part. 

Maximizing the second term with respect to Ly ,...,1, =l
l

 and β  will give estimates of L  population 

parameters and the item parameters. Calibration using the background information in the TTOP case 

is thus a generalization of standard MML. 

 If we do not use the background information in the TTOP case, the partition the observed 

design variable im  establishes becomes: 

 

, ,

, ,

,( 1 )
( ,θ )

obs i obs i

mis i mis i i i

U X
i ,...,n

U X Y

= 
== 

         (20) 

 

The design distribution is given by: 

 

,...,L) (yYrM ii 1,φ)|)0,0,((P )( ==== l
l

l

l
.        (21) 

 

We see that the MAR condition in this case is not fulfilled, because the design distribution 

depends on values of iY  which are considered as missing if we do not use Y  in the analyses. Not 

using Y  in the TTOP case is not justified by the ignorability principle and can lead to incorrect 

estimates of the parameters. The next example will illustrate this.  

 

Example 2.  

In a simulation study, data were generated according to the following specifications: two non-

equivalent samples of 1000 students were drawn from two normal distributions, respectively 

1,1)N(~θ −  and 1,1)N(~θ + . The less able population is administered the first 6 items out of a pool 

of 9 items. The more able pupils took the last 6 items. So the anchor consisted of 3 items. The 

responses are generated according to the Rasch model and the item parameters are: 

0.5β1.0,β2.0,β 321 −=−=−= , 0βββ 654 ===  and 0.2β1.0,β,5.0β 987 −=== . So we have a data 

matrix with the same structure as in a targeted testing design, in which students are assigned to one 
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of the two test booklets on the basis of a background variable. If we estimate the item parameters 

ignoring the background variable or design variable and apply MML estimation in a standard way 

with one ability distribution, we get the results given the third column of Table 2.  

We see a clear bias in the estimates of the parameters that were administered in only one of the 

two non-equivalent samples. The difficulty parameters of the items only administered in the less able 

group ( )( θ 1.0)Ε = −  are overestimated and are underestimated in the more able group ( )( θ 1.0)Ε = . 

If we do not ignore the design variable and estimate with two marginal distributions (19) we get the 

results in the fourth column of Table 2, which are seen to be free from systematic bias. It is noted 

that the results of these two calibrations are comparable by fixing both scales by β 0ii
=∑  

 

 

Table 2. Input and estimated difficulty parameters Rasch model 

item β  (input) β  (se); one marginal β  (se); two marginals 

1 -2.0 -1.521 (.080) -1.979 (.079) 

2 -1.0 -0.418 (.072) -0.938 (.072) 

3 -0.5 0.051 (.072) -0.498 (.073) 

4  0 -0.042 (.051) -0.066 (.053) 

5  0 0.032 (.051) 0.014 (.053) 

6  0 -0.045 (.051) -0.069 (.053) 

7  0.5 0.046 (.073) 0.589 (.075) 

8  1.0 0.417 (.073) 0.952 (.074) 

9  2.0 1.480 (.079) 1.996 (.080) 

mean  =µ̂  0.047 =1µ̂  -0.986 =2µ̂  1.097 

sd  =σ̂  1.293 =1σ̂  0.954 =2σ̂  1.129 

 

 

 In the TTMP situation the background variable is used as a stratification variable: from every 

subpopulation L,...,1, =ll , we have a random sample from )θ(γ
l

g  with 
l

n  the number of 

observations in subpopulation l  and nnL =Σ = ll 1  the total sample size. The sampling proportions in 

the subpopulations, π /n n∗ =
l l

 can but will in general not be equal to the population proportions π
l
. 

These population proportions π
l
 are not estimable in this case but they must be known in advance. 

This also means that in the TTMP case the distribution in the total population (16) can only 

completely be estimated provided the population proportions are known and that we have samples 
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from every subpopulation, Ln ,...,1,0 => l
l

. Otherwise we are not able to estimate all subpopulation 

parameters L,...,1,γ =l
l

. Another difference from the TTOP situation is that in TTMP the values of 

Y  are known before sampling, so Y  is not a random variable here. In order to identify the 

membership of a student of a subpopulation we will have to use the values of Y . So we will not 

consider the simultaneous probability of the observed response vector iobsx ,  and iY  as in the TTOP 

case (18), but the conditional distribution of iX  given )(lyYi = . The design distribution is given by: 

 

P( ( ,0)) 1
i i

M m r= = =
l

l
 if ( )

iY y= l .         (22) 

 

Compared to (17), the TTOP case has one element less, because is not random. Because of 

(22) the conditional distribution of a response vector given )(lyYi =  is the same as the conditional 

distribution of given the design variable. For a randomly sampled student from subpopulation we 

have: 

 

( ) ( )

( )

β ,γ , β ,γ ,
( | ) ( | )

lobs i i obs i i
P x m P x Y y= = =

l l l l l l

l  

 

( )

( ) ( )

β ,γ , , ,
θ

( , ,θ ) | ). (θ | ) θ
mis,i i

obs i mis i i i i i i mis i
x

P x x Y y P Y y d dxγ∫ ∫ = = =
l l l l l l ll

l l

l l  

 

( )β , γ
θ

( | θ ). (θ ) θ
i

obs i i i i
P x g d∫

l l l l ll

l

. 

 

And for the total sample we have the likelihood 

 

( )β , γ
1 1 θ

( | θ ). (θ ) θ
i

nL

obs i i i i
i

P x g d
= =
∏∏ ∫

l

l l l l ll
l l

l

.         (23) 

As before the parameters β  and L,...,1,γ =l
l

, provided 0n >
l

,  can be estimated from (23). It 

is noted that in the TTMP situation we do not ignore the design variable in the analyses but explicitly 

condition on it. 

 If we do not use the background information in the TTMP case this will not lead to correct 

inferences on the parameters. If we were willing to make the unrealistic extra assumption that all 

students are randomly drawn from one population with ability distribution 
γ

(θ)g ∗  defined by 

 

γ γγ 1 1

(θ) π (θ) ( / ). (θ)
L L

g g n n g∗

∗

= =
= ∑ = ∑

l l
l l

l l
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then we are in fact in the TTOP situation for which it was shown ((20) and (21)) that by Y  ignoring 

the MAR condition for ignorability is not fulfilled. 

 Summarizing we can say that in MML item calibration in complete testing designs is 

justified as long as we are sampling from one population there is more or less a free choice of 

whether the background variable is used in order to get estimates of the item parameters. However 

when sampling from multiple subpopulations and always in incomplete targeted testing designs, in 

TTOP as well as TTMP, there is no choice whether the background information Y  must be used. 

Not using Y  never leads to correct inferences on the item parameters or the population parameters. 

So we are obliged to use the subpopulation structure in MML estimation in order to get a correct 

estimation procedure. It will also be clear that the parameters of the ability distribution of the total 

population can only be estimated correctly, even in the case that we have a random sample from one 

population, via estimating the subpopulation parameters and the population proportions. Although 

standard computer implementation of MML procedures (e.g., in BILOG-MG, OPLM) have facilities 

to use Y , and to distinguish more subgroups in the samples, the awareness of the possible problems 

is not general and in practice many failures are made. 

 

The Conditional Model and Missing Data 

In the preceding section it was shown that in MML estimation in incomplete designs checking 

Rubins (1976) conditions for ignorability is useful. Only when we are sampling from multiple 

populations it is not possible to ignore the design variable (in targeted testing) and explicitly use the 

design in the analysis. But in all other cases considered checking the standard conditions to be met 

for ignorability, makes clear that estimating the parameters with MML while ignoring the design 

variable is justified. 

 We will elaborate now on whether applying these ignorability checks are also useful in CML 

estimation. In applying the ignorability principle we fix the random design variable M  at the 

observed pattern of missing data m  and assume that the values obsu  are realizations of the marginal 

distribution of 
obs

U  (7): 

 

( , )
mis

obs mis mis
u

f u u du∫ . 

 

Remember (8) that the correct distribution of the realizations obsu , 

 

( , | )
mis

obs mis mis
u

f u u m du∫ , 

 

the conditional distribution of obsU  given mM = , is not used in the analysis, but only the marginal 

distribution of the observed responses. Note that in the CML case, the design variable iM  and the 

item indicator variable iR  are the same because the only variables inferred on are the item responses 

X , and θ  is not treated as a random variable as in MML. It will be clear that ignoring the design 



Item calibration in incomplete testing designs 

 

125

variable in CML estimation is only possible if for an individual observed response vector iobsX ,  there 

exists a sufficient statistic )( ,, iobsiobs XSS =  for iθ  in the marginal distribution (40). It can easily be 

shown that in the IRT models we consider, for example in the Rasch model the sum score  

 

,obs i ij
j obs

S X
∈

= ∑ , 

 

is not only not sufficient for iθ  in the marginal distribution of the observations iobsX , , but also not 

sufficient in the distribution of all observed data ),( , iiobs RX . iobsS ,  is only sufficient in the 

conditional distribution of the responses given the item indicator variable iR . An example will make 

this clear. Assume we have 3 items following the Rasch model with parameters 

3,2,1),βexp( =−=∈ iii  and a random item indicator variable with two possible outcomes )1φ0( << : 

 

1P( (1,1,0)) φiR r= = = , and 2P( (1,0,1)) 1 φiR r= = = − . 

 

In Table 3 the relevant probabilities for all outcomes with 1=obsS , with exp(θ) ξ=  are given. 

 

 

Table 3. Probabilities for all outcomes with 1=obsS  

,obsx r  ),( rxp obs  )|( 1rxp obs  )|( 2rxp obs  
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Conditioning on obsS  in the joint distribution of obsX  and R , that is, dividing in Table 3 the 

terms in the upper part of column (i) by the term in the lower part, does not cancel the individual 

parameter ξ . On the other hand it can easily be checked that in the conditional distributions of obsX  

given R , obsS  is sufficient for ξ . Divide the upper part terms in column (ii) and (iii) in Table 3 by 

their lower part term. In the example the same is easily checked for the outcomes with obsS  is 2 and 

0. 

 In general, the probability of the observed variables can be written as  

 

θ,β,φ θ ,β,φ , φ
( , ) ( | ). ( )

iobs obs i i i
i

P x r P x r P r= ∏ .        (24) 

 

We use the same notation as before. We distinguish T  values of the design variable 

Ttrt ,...,1, = ; tn  is the number of students taking test t ; )(β t  is the tk - vector of the parameters of the 

items in test t . We can then rewrite (24) as: 

 

θ,β,φ θ ,β ,φ , φ
1 1

( , ) ( | ). ( )
t

i (t)

nT

obs obs i t t
t i

P x r P x r P r
= −

= ∏∏ .        (25) 

 

We see in (25) that we have in fact the product of T  complete data likelihoods. For every t  

the first factor in the right-hand side of (25) can, as in complete data CML (see (3)), be written as 

 

θ ,β ,φ β , , θ ,β ,φ ,
1 1

( , ) ( | , ). ( , )
t t

i (t) (t) i (t)

n n

obs t obs i obs i t obs i t
i i

P x r P x s r P s r
= =
∏ =∏ .      (26) 

 

And the first factor in the right-hand side of (26) is again free of any incidental parameters, and 

 

β , ,
1 1

( | , )
t

(t)

nT

c obs i obs i t
t i

L P x s r
= =

= ∏∏           (27) 

 

can be used for CML estimation of β . Note that when estimating the item parameters in this way 

there are as many different sufficient statistics as there are designs involved. 

 So we have seen that the standard ignorability checks of Rubin cannot be applied in CML 

estimation. We have to condition explicitly on the design variable in order to get sufficient statistics 

for the incidental parameters. But whether it is justified to estimate the item parameters by just 

maximizing the likelihood (27) depends of course, as in the complete data case, on the properties of 

the part of the total likelihood (25) we neglect in that case. The neglected part in CML estimation in 

incomplete designs is (combining (25), (26) and (27)) 
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θ ,β ,φ , θ ,β ,φ , φ
1 1 1 1 1 1

( , ) ( | ). ( )
t t t

i (t) i (t)

n n nT T T

obs i t obs i t t
t i t i t i

P s r P s r P r
= = = = = =
∏∏ =∏∏ ∏∏ .      (28) 

 

In (28), the first factor on the right hand side is the product of T  terms, which are also 

neglected in the complete data case. Because neglecting this part was shown to be possible (Eggen, 

2000) without severe consequences, the properties of the marginal distribution of the design variable 

will be decisive for the justification of neglecting the term. We will discuss the properties of (28) for 

the three considered design types next.  

 

 CML in random incomplete designs. In random incomplete designs the design distribution is 

given by (12). Considering the first factor of the part of the likelihood we neglect in CML (28), we 

see this factor consists of the product of T  complete data distributions of the sufficient statistics obss

, which can be neglected. From the design distribution (12) it is easily seen that the second part of 

(28), )(φ trP , does not depend on the item parameters at all. As a consequence, (28) can be neglected 

in CML estimation. So CML estimation is justified in random incomplete designs. 

 

 CML in multistage testing designs. In multistage testing the first part of (28) can be neglected 

for the same reason as in random incomplete designs. The second part, however, the design 

distribution in multistage testing designs, is dependent of the observed variables. Given the design 

distribution (14) we can write the second part as:  

 

( )φ φ , β ,θ ,
1 1 1 1

( ) ( | ). ( )
t t

obs i

n nT T

i t i t obs i obs i
t i t i

P R r P R r x P x
= = = =
∏∏ = = ∏∏ = .      (29) 

 

We see that (29) is for every t  directly dependent of the item parameters of the items used for 

establishing the design. This means that (28), cannot be neglected in CML estimation. So CML 

estimation is in this situation not justified because it implies that not all random variations in the data 

relevant for estimating the item parameters are considered in the conditional likelihood. Applying 

CML estimation in these designs, which is possible by running standard computer programs for 

CML, gives incorrect estimates of the item parameters. An example will illustrate this. 

 

Example 1 (continued).  

The items and the design used are given in example 1. Generated are 4000 responses on these 

items using a standard normal ability distribution. First the item parameters estimated in the 

complete design are given in the third column in Table 4. In the fourth column the results are given 

of the item parameter estimates in the two stage testing design. 

It is clear that applying CML estimation in this two stage testing design gives systematic errors 

in the item parameter estimates: the item parameters of the easy items (4 and 5) are underestimated, 

and the parameters of the hard items are overestimated. 
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Table 4. CML estimates and standard errors in a two stage testing design 

item β  (input) β  (se) 

complete 

       β  (se) 

multistage 

       β  (se) 

        multistage 

1  0 -0.360 (.033) -0.360 (.035)           - 

2  0 0.004 (.033) 0.060 (.035)           - 

3  0 0.024 (.033)  0.028 (.035)           - 

4 -1.25 -1.284 (.037) -1.709 (.049) -1.326 (.053) 

5 -1.0 -0.990 (.036) -1.419 (.048) -1.021 (.052) 

6 -0.5 -0.445 (.034) -0.467 (.035) -0.452 (.035) 

7  0.5 0.506 (.034) 0.535 (.035) 0.517 (.036) 

8  1.0 0.964 (.035) 1.387 (.047) 0.989 (.051) 

9  1.25 1.257 (.037) 1.674 (.048) 1.293 (.052) 

 

 

The last column of Table 4 gives the results in case the item parameters of the routing test are 

not estimated themselves. It is seen that in that case CML gives correct estimates on the other items.  

This can be understood by the fact that distribution of the design variable (26) is not dependent on 

the parameters to be estimated. If we denote the indices of the observed items in the routing test with 

1obs  and the parameter vector with )1(β , and the other with 2obs  and )2(β  then in CML estimation 

of the items that are not in the routing test the following likelihood is used: 

 

2
( )

2, 2,β1 1

( | , )
t

t

nT

c obs i obs i t
t i

L P x s r
= =

= ∏∏ . 

 

And the distribution of the design which is neglected in the estimation is given by 

 

1,φ 1, β θ 1,
1 1

( | ). ( )
t

obs i i

nT

i t obs i obs i
t i

P R r x P x
= =
∏∏ = . 

 

does not depend on the parameters )2(β , which are estimated.  

 

Following the procedure given in Example 1 is a possible practical solution if the items are to 

be estimated with CML a two stage testing design. Glas (1988) showed that another possible 

approach for CML in multistage testing, conditioning on the scores for every stage of the design, 
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fails, because it results in separate calibrations for the items in a stage, which can not be connected 

on the same scale.  

 

 CML in targeted testing designs. In targeted testing designs the value of a background 

variable Y  determines the design. The design distribution is given by (14). Before we made the 

distinction between the two sampling roles Y  can play in the design and using or not using Y  was 

of utmost importance in MML estimation. In CML estimation, however, these distinctions are not 

relevant. 

 Firstly, consider complete testing designs in the presence of background information. The 

simultaneous probability of the response vector iX  and of iY  of student i  is given by 

 

( ) ( ) ( )

θ ,β,π θ ,β π
( , ) ( | ).P ( )

i ii i i i i
P x Y y P x Y y Y y= = = =

l l

l l l . 

 

Conditioning on the sufficient statistic iS  gives: 

 

( ) ( ) ( ) ( )

θ ,β,π θ ,β θ ,β π
( , ) ( | , ). ( | ).P ( )

i i ii i i i i i i i
P x Y y P x s Y y P s Y y Y y= = = = =

l l

l l l l     (30) 

( ) ( )

β θ ,β π
( | ). ( | ).P ( )

ii i i i i
P x s P s Y y Y y= = =

l

l l . 

 

In (30) )(lyYi =  cancels in )|(β ii sxP  because given iθ  the item responses are not dependent of 

any other characteristic of the students (local independence). The complete likelihood of the sample 

is given by: 

 

( ) ( )

β θ ,β π
( | ). ( | ).P ( )

ii i i i i
i i

P x s P s Y y Y y∏ ∏ = =
l

l l .       (31) 

 

From (31), the first factor is used in CML estimation. And, as before the second factor is 

always discarded in CML estimation and the third factor is independent of it. So CML is a justified 

procedure to estimate β . Furthermore it is clear that the background information is in fact always 

used in the analyses, since it defines the design, but it appears only in that part of the likelihood 

which can be neglected in CML estimation. If we would have samples from multiple populations all 

the above still holds. The only change we have to make is that we start with )|( )(

β,θ

lyYxP iii
=  with 

as a consequence that )( )(

π

l

l

yYP i =  cancels in (30) and (31). So it can be concluded that in CML 

estimation all the sample information is in that part of the total likelihood which is justified to be 

neglected. The independence of CML estimation of the actual sample available for estimation can be 

understood in this way. 
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 Next, we consider incomplete targeted testing. Here we distinguish as many values )(L  of 

the design variable ir  as we distinguish values of the background variable iY . If we rewrite the total 

likelihood as before ((25), (27) and (28)) we see that the conditional likelihood to be maximized is: 

 

β , , ( )
1 1

( | , , ),
nL

obs i obs i i
i

P x s r Y y
= =
∏∏ =

l

l
l l

l

         (32) 

 

and the neglected part becomes 

 

( )

( )

θ ,β ,φ,π ,
1 1

( , , )
i

nL

obs i i
i

P s r Y y
= =
∏∏ = =

l

l

l

l
l

         (33) 

( )

( ) ( )

θ ,β ,φ,π , φ,π
1 1 1 1

( | , ) ( , )
i

n nL L

obs i i i
i i

P s r Y y P r Y y
= = = =
∏∏ = = ∏∏ =

l l

l

l l

l l
l l

. 

 

From the design distribution (14) it is seen that the second part of the right hand side of (33) is 

independent of the item parameters which are to be estimated. So CML estimation, on the basis of 

the conditional likelihood (32), is justified in targeted testing. 

 

Example 2 (continued) 

If we estimate the item parameters of example 2 with CML, we see in results of Table 5. that 

targeted testing does not cause any systematic errors in the item parameter estimates. 

 

Table 5. Input β  and estimated β̂  difficulty parameters Rasch model 

item β  (input) β̂  (se);CML 

1 -2.0 -1.980 (.080) 

2 -1.0 -0.935 (.072) 

3 -0.5 0.497 (.073) 

4  0 -0.066 (.053) 

5  0 0.015 (.053) 

6  0 -0.069 (.053) 

7  0.5 0.592 (.075) 

8  1.0 0.954 (.074) 

9  2.0 1.986 (.080) 
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Conclusion 

In this study it has been shown for the three most common stochastic incomplete design types 

under which conditions item calibration is possible. It was seen that in MML estimation Rubins 

ignorability principle can directly be applied to justify the missing data procedures. In CML 

estimation this was seen not to be the case. In CML the design is never ignored and must always be 

an explicit part of the conditional likelihood. In CML we in fact always work with the combination 

of as many complete data likelihoods as there are designs. The key condition for justifying CML is 

in the dependence of the distribution of the design variable on the item parameters which are to be 

estimated. 

Summarizing it can be said that in random incomplete designs both MML and CML are 

possible. In multistage testing designs MML is always a good option for item calibration. CML 

estimation is in multistage testing in general not justified. It was shown, that in a two stage testing 

design a practical feasible solution is, to conduct the CML estimation without estimating the item 

parameters of the routing test. In targeted testing CML is always possible. MML estimation gives 

sometimes problems. If one knows, for instance by stratified sampling, that in the testing design the 

assignments to the test booklets is according to these strata, MML estimation is justified when as 

many marginal ability distributions are specified as strata or designs. Ignoring the background 

variable gives biased results. 

 It was noticed that in standard computer algorithms for MML assuming a random sample 

from one population in practice many failures are made when we have in fact not one random but a 

stratified sample or when we have a targeted testing design. In CML computer algorithms data from 

multistage testing designs can give incorrect results. In this study some small examples were given 

to show the miss-behaviour of some procedures. How much impact this has in practical situations in 

which we have more items and with other distributions of the item parameters, is worthwhile 

exploring. 

 It should be noticed that all the principles elaborated for the three basic designs can also be 

applied in combination, when we have designs in which properties of the basic designs are 

combined. 

 Finally it is remarked that in this study all results are for convenience illustrated by the 

simple one-parameter logistic model for dichotomously scored items. But the results also apply, 

whenever CML or MML is applicable, for models for polytomously scored items and for models 

with more than one item parameter. 
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