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This study investigated how population parameters representing heterogeneity of variance, skewness, 

kurtosis, bimodality, and outlier-proneness, drawn from normal and eleven non-normal distributions, also 

characterized the ranks corresponding to independent samples of scores. When the parameters of 

population distributions from which samples were drawn were different, the ranks corresponding to the 

same pairs of samples of scores inherited similar differences. This finding explains some known results 

concerning Type I error probabilities and the relative power of parametric and nonparametric tests for 

various non-normal densities.  

 

When random samples are drawn from populations with certain known parameters, it is 

commonplace to expect that statistics calculated from the samples will not deviate too far from the 

population parameters. For example, if two populations have different means, one expects that two 

samples, one drawn from each population, will also have different means. Furthermore, if the scores 

in the samples are combined, or pooled together, and then transformed to a single series of ranks; 

and each score in the respective samples is replaced by its corresponding rank, one expects that the 

two sets of ranks will also have different means. This method, or a similar method, is employed in 

nonparametric rank tests such as the Wilcoxon-Mann-Whitney test, the Kruskal-Wallis test, and the 

Wilcoxon signed-ranks test.  

 When examining the properties of these nonparametric methods, researchers have focused on 

the fact that ranks preserve order, but do not preserve other characteristics of distributions, such as 

the differences, or intervals, between successive scores. A distribution of � ranks can be considered 

a rectangular distribution of integers on the interval (1, �). The fact that statistics calculated from 

ranks do not preserve the size of intervals in the original population of scores explains some of the 

favorable properties of nonparametric rank tests. 

However, it is easy to overlook another feature of these nonparametric methods. If scores from 

two or more samples are combined into a single group and ranked, and scores in the respective 

samples are replaced by the ranks, the resulting groups of ranks do not necessarily have rectangular 

distributions. Although it is usually taken for granted that the means of separate groups of ranks 

reflect the means of the original samples, it is not always appreciated that other parameters, related 

to the shape or the degree of variability of the distributions of ranks, also can retain properties of the 

original samples. 
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Consider, for example, differences in variances. If two samples of scores with decidedly 

heterogeneous variances, drawn from populations with heterogeneous variances, are transformed to 

ranks, those ranks can be expected to inherit, to some extent, the inequality of variances. A simple 

example makes this clear: Suppose the scores in one group are 1.5 and 20.5 and the scores in another 

group are 10 and 11. If all scores are combined and ranked, the resulting two sets of ranks are 1 and 

4 compared to 2 and 3. So an initial difference in the variances of the scores is retained by the 

resulting ranks, although it is somewhat less. For larger �, a still smaller difference in variances of 

the original samples can also be preserved and noticeable in the ranks (see, for example, Zaremba, 

1965; Zimmerman, 1996).   

 One might expect that other characteristics of distributions, including higher moments, also 

apply to ranks. Another simple example: Suppose scores in the first group are 10.1, 11, and 12.5, and 

those in the second group are 3, 20, and 22.5. Then the ranks in the first group are 2, 3, and 4, while 

the ranks in the second group are 1, 5, and 6. So in this case, not only variance but also asymmetry of 

scores, or skewness, is imparted to the ranks. The present study examined various sample statistics, 

calculated from both scores and ranks, using simulation methods to replicate the ranking process 

over large numbers of samples. In addition to variances, the study determined the extent to which 

skewness, kurtosis, bimodality, and outlier-proneness in distributions of scores also characterize 

corresponding distributions of ranks.  

METHOD
 

The simulations in this study employed the Mathematica programming language, together with 

Mathematica statistical add-on packages
1
. First, the program generated two independent samples of 

�1 and �2 scores from one of the standard densities in the Mathematica package or from one of the 

mixtures described below. All distributions had mean 0 and variance 1. Next, the scores were 

combined into a single group and transformed to ranks ranging from 1 to �1 + �2.  Finally, the 

scores in the original two groups were replaced by the ranks that had been assigned in the combined 

group. This ranking method is familiar in nonparametric significance tests, such as the Wilcoxon-

Mann-Whitney test and the Kruskal-Wallis test.   

 The program calculated means, standard deviations, coefficients of skewness, and 

coefficients of kurtosis of the scores in the original groups of scores and the same statistics in the 

corresponding groups of ranks. Also, the program found ratios of standard deviations, s1/s2, for the 

two groups of scores, as well as ratios of standard deviations of ranks, r1/r2, for the respective groups 

of ranks. Similar ratios of both scores and ranks, were found for coefficients of skewness and 

kurtosis. The sampling procedure was replicated 50,000 times under each condition investigated. 

Also, the study found frequency distributions of both the original scores tabulated in class intervals, 

as well as the distributions of assigned ranks from 1 to  �1 + �2, in the respective groups.  

The study investigated six symmetric and six skewed distributions. Eight of these were 

standard continuous densities with known parameters. These included the normal, exponential, 

Laplace (double-exponential), lognormal, logistic, Gumbel (extreme-value), uniform (rectangular), 

and half-normal distributions. In addition, four mixtures of distributions, chosen to represent non-

normal data often encountered in research, were included. A symmetric bimodal distribution 

consisted of samples from �(1, 1) with probability .5 and from �(−1, 1) with probability .5. A 

skewed bimodal distribution consisted of samples from �(−.4, .2) with probability .25 and from 
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�(.4, .1) with probability .75. To represent outliers in research data, a symmetric mixed-normal 

distribution consisted of samples from �(0, 1) with probability .9 and from �(0,10) with probability 

.1. Finally, a skewed mixed-normal distribution consisted of samples from �(0,1) with probability .9 

and from �(5, .1) with probability .1. All mixtures were standardized to have mean 0 and variance 1. 

The program also obtained frequency distributions of sample values of scores in two groups as 

well as the corresponding ranks over large numbers of replications of the procedure. These 

distributions were plotted graphically
2
. The program found similar distributions for several cases in 

which three or four distributions were combined before ranking, as done in the Kruskal-Wallis test, 

and the distributions were plotted graphically. 

 Sample values of skewness and kurtosis were found from the built-in functions of the 

Mathematica software. The population values of skewness and kurtosis shown in the tables were 

known for the standard probability densities included. The values for the bimodal and mixed-normal 

distributions created for purposes of the study were found by simulation, based on one million 

samples. 

 As a check on the accuracy of the method of finding random normal deviates, some 

simulations in the study were repeated using random numbers generated by the method of Marsaglia, 

Zaman, & Tsang (1990), described by Pashley (1993), together with normal deviates obtained by the 

method of Marsaglia & Bray (1964). These values were transformed using inverse distribution 

functions in order to obtain samples from the various non-normal densities. This procedure gave 

results close to those in Tables 1 and 2, so all subsequent simulations used random deviates obtained 

from continuous distributions in the Mathematica statistical add-on package. 

RESULTS OF SIMULATIO�S 

 

Inheritance of heterogeneity of variance. 

The results in Table 1 indicate that differences in variability in scores in two groups are 

preserved after transformation of the scores to ranks. The second column is the ratio of the standard 

deviations of two normally distributed populations. The third column is the mean ratio of standard 

deviations of two independent random samples of size 25 from those populations. The ratios in the 

samples of scores remained close to the ratios in the populations. The third column is the mean ratio 

of standard deviations in two groups of ranks, after the scores in both groups have been combined 

and the original scores in the two samples have been replaced by their ranks. The ratio was found for 

each individual pair of samples, and the table shows the mean of these ratios over all 50,000 pairs. 

The remaining two columns in the table give similar results for � = 100.   

More detailed information about the shape of the entire distributions of these ratios over all 

replications of the sampling procedure also is informative. Relative frequency distributions of the 

ratios of standard deviations of scores and the ratios of standard deviations of the corresponding 

ranks are plotted in Figure 1, for normal distributions with � = 100. Three population ratios, σ1/σ2, 

of 1, 2, and 3 are shown in the figure. Here the degree of variability and shifts in the means one 

would expect from the means and standard deviations in Table 1 is obvious.  
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Table 1. Ratios of standard deviations of scores and ranks in samples from populations with 

equal means and varying ratios of standard deviations. 

 
Population 

Distribution 

 �1 = �2 = 25 �1 = �2 = 100 

σ1/σ2 scores ranks scores ranks 

 

normal 

1 

2 

3 

1.021 

2.045 

3.062 

1.009 

1.444 

1.705 

1.005 

2.010 

3.013 

1.002 

1.437 

1.702 

 

exponential 

1 

2 

3 

1.075 

2.153 

3.204 

1.008 

1.590 

1.818 

1.016 

2.040 

3.057 

1.001 

1.586 

1.821 

 

Laplace 

1 

2 

3 

1.056 

2.092 

3.150 

1.012 

1.335 

1.547 

1.014 

2.026 

3.036 

1.003 

1.328 

1.542 

 

lognormal 

1 

2 

3 

1.226 

2.446 

3.685 

1.009 

1.623 

1.827 

1.088 

2.174 

3.248 

1.003 

1.620 

1.832 

 

logistic 

1 

2 

3 

1.033 

2.072 

3.101 

1.009 

1.407 

1.653 

1.008 

2.016 

3.018 

1.002 

1.398 

1.651 

 

Gumbel 

 

1 

2 

3 

1.042 

2.083 

3.132 

1.008 

1.464 

1.720 

1.010 

2.020 

3.031 

1.002 

1.458 

1.718 

 

bimodal 

(symmetric) 

1 

2 

3 

1.008 

2.018 

3.027 

1.008 

1.792 

2.125 

1.002 

2.004 

3.006 

1.002 

1.789 

2.135 

 

bimodal 

(skewed) 

1 

2 

3 

1.034 

2.057 

3.106 

1.010 

1.808 

2.086 

1.006 

2.013 

3.017 

1.003 

1.813 

2.104 

 

mixed-normal 

(symmetric) 

1 

2 

3 

1.359 

2.711 

4.061 

1.008 

1.341 

1.534 

1.075 

2.154 

3.216 

1.002 

1.334 

1.527 

 

mixed-normal 

(skewed) 

1 

2 

3 

1.056 

2.108 

3.159 

1.009 

1.401 

1.610 

1.010 

2.019 

3.027 

1.003 

1.395 

1.607 

 

uniform 

1 

2 

3 

1.011 

2.019 

3.026 

1.010 

1.603 

1.868 

1.002 

2.004 

3.009 

1.002 

1.601 

1.871 

 

half-normal 

1 

2 

3 

1.032 

2.063 

3.099 

1.010 

1.544 

1.796 

1.007 

2.016 

3.022 

1.002 

1.537 

1.795 

 

In both Figure 1 and Table 1, the ratios of standard deviations of ranks are somewhat less than 

the same ratios of scores, although in all cases they change in a systematic way as the population 

ratios change. The pattern is much the same for all 12 distributions, and the values are quite close for 

both � = 25 and � = 100. These results are consistent with the well-established finding that 

“heterogeneity of variance,” influences nonparametric rank tests in the same way that it influences t 
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and F tests, although to a lesser degree (see, for example, Pratt, 1964; Zaremba, 1965; Lehmann, 

1975; Zimmerman, 1996) .  
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Fig. 1. Relative frequency distributions of the ratios of standard deviations of scores and ranks 

for three values of the corresponding population ratio. 
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Figure 2 plots relative frequency distributions of the scores and ranks themselves, over all 

50,000 replications. Evidently, the shape of the distributions of ranks in each of the two groups is 

quite different from that of the distributions of scores. However, some characteristics of the scores, 

such as the difference in variability, are evident in the ranks. Also, the symmetry of each distribution 

of scores is retained by the corresponding distribution of ranks. 

 Table 2 presents results of a somewhat different approach, in which pairs of samples were 

selected so that only those in which the ratio of standard deviations of scores exceeded a cutoff value 

were retained and transformed to ranks. The cutoff ratios are shown as column headings, and the 

first column shows sample sizes. The first row for a given sample size is the mean ratio of standard 

deviations of ranks corresponding to the scores exceeding the cutoff. The second row for that sample 

size is the proportion of samples that exceeded the cutoff value. Clearly, the ratios of standard 

deviations of ranks reflected the ratios of standard deviations of scores for each cutoff ratio and 

varied systematically with the size of the cutoff ratio. 

N
1
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Fig. 2. Inheritance of heterogeneity of variance of distributions of scores by distributions of 

ranks.  
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Table 2. Mean ratio of standard deviation of ranks in group 1 and standard deviation of ranks 

in group 2 (s1/s2) conditional on the ratio of the standard deviation of scores in group 1 and the 

standard deviation of scores in group 2 exceeding the cutoff values shown in the first row. The 

rows labeled p  are the proportions of all ratios of scores exceeding the cutoff values. 

 
 

N1 = N2 

 Cutoff ratios of Standard Deviations of Scores 

1.0 1.1 1.2 1.3 1.4 1.5 

 

8 

p  .498 .404 .320 .252 .199 .153 

s1/s2  1.218 1.251 1.305 1.349 1.389 1.414 

 

10 

p .498 .385 .296 .221 .163 .121 

s1/s2  1.185 1.226 1.267 1.319 1.358 1.399 

 

15 

p .494 .360 .249 .171 .111 .078 

s1/s2  1.134 1.176 1.228 1.265 1.305 1.347 

 

25 

p .505 .326 .187 .097 .056 .022 

s1/s2 1.101 1.143 1.186 1.229 1.263 1.303 

 

50 

p .501 .258 .101 .034 .009 .003 

s1/s2 1.067 1.109 1.150 1.197 1.251 1.286 

 

100 

p .496 .164 .035 .005 .001 0 

s1/s2  1.047 1.087 1.129 1.168 1.233 --- 

 

 

 

Inheritance of differences in skewness. 

 Table 3 presents similar data comparing coefficients of skewness for scores and ranks. 

Each of the distributions listed in the first column, from which sample 1 was drawn, was 

paired with a normal distribution, from which sample 2 was drawn. Therefore, the difference in 

skewness was zero when a symmetric distribution was paired with the normal distribution, but 

otherwise was non-zero. 

The second column shows the known values of skewness for the various population 

distributions. The third and fourth columns are the mean coefficients of skewness for the two 

samples of scores, and the fifth and sixth columns are the mean coefficients for the ranks. 

 The coefficients obtained from samples were not far from the known values for the 

population distributions. First, for the symmetric population distributions, values for both scores and 

ranks were close to zero, consistent with the zero skewness of the populations. However, the skewed 

distributions, had substantial non-zero values for both scores and ranks, although the values for ranks 

were consistently less. Therefore, a pattern similar to the familiar one found for “heterogeneity of 

variance” occurred in the case of skewness. Figure 3 shows more detailed frequency distributions of 

scores and ranks obtained in samples from a Gumbel distribution and a normal distribution. Clearly, 

for this pair of distributions, the differences in skewness of the scores was inherited by the ranks.  
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Table 3. Mean coefficients of skewness of scores and ranks from two samples (�1 = �2 =100). 

Samples from the distributions in the first column (Sample 1) were combined with samples 

from a normal distribution (Sample 2). 
 

 

 

Population 

Distribution 

 

 

Population 

Skewness 

(Sample 1) 

 

 

Sample Skewness of 

Scores 

 

 

Sample Skewness of 

Ranks 

Sample 1 Sample 2 Sample 1 Sample 2 

 

normal 

 

0 

 

.003 

 

.004 

 

.000 

 

.000 

 

exponential 

 

2 

 

1.787 

 

.001 

 

.344 

 

−.284 

 

Laplace 

 

0 

 

.002 

 

−.001 

 

−.001 

 

.001 

 

lognormal 

 

6.185 

 

3.185 

 

−.001 

 

.464 

 

−.291 

 

logistic 

 

0 

 

.000 

 

.001 

 

.002 

 

−.002 

 

Gumbel 

 

1.140 

 

1.033 

 

.003 

 

.163 

 

−.152 

 

bimodal 

(symmetric) 

 

 

0 

 

 

−.004 

 

 

.002 

 

 

−.003 

 

 

.003 

 

bimodal 

(skewed) 

 

 

−1.206 

 

 

−1.213 

 

 

.001 

 

 

−.535 

 

 

.487 

 

mixed-normal 

(symmetric) 

 

 

0 

 

 

−.022 

 

 

.000 

 

 

.001 

 

 

−.002 

 

mixed-normal 

(skewed) 

 

 

1.370 

 

 

1.365 

 

 

−.002 

 

 

.270 

 

 

−.229 

 

uniform 

 

0 

 

.001 

 

−.005 

 

.001 

 

−.001 

 

half-normal 

 

.995 

 

.947 

 

.002 

 

.197 

 

−.193 
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Fig. 3. Inheritance of skewness of distributions of scores by distributions of ranks. 

 

 

  Inheritance of differences in kurtosis. 

 Table 4 presents data for coefficients of kurtosis. Again the second column gives the kurtosis 

of the populations. The third column, labeled sample 1, is consistent with the values for the various 

populations, except for the anomalous case of the lognormal distribution, while the values in the 

fourth column, labeled sample 2, are near the 3.00 of the normal distribution. The fifth column gives 

mean ratios of coefficients obtained in sample 1 and sample 2. It should be emphasized that those 

ratios are not ratios of the means shown in the third column and those in the fourth column, but are 

the means of the ratios of the coefficients of kurtosis found in each individual sample. 
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Table 4. Mean coefficients of kurtosis and ratios of coefficients of kurtosis of scores and ranks 

from two samples (�1 = �2 = 100). Samples from the distributions in the first column (Sample 

1) were combined with samples from a normal distribution (Sample 2). 

 

 

Population 

Distribution 

Population 

Kurtosis 

(Sample 1) 

 

Sample Kurtosis of Scores 

 

Sample Kurtosis of Ranks 

Sample 1 Sample 2 Ratio Sample 1 Sample 2 Ratio 

 

normal 

 

3 

 

2.944 

 

2.941 

 

1.023 

 

1.813 

 

1.812 

 

1.004 

 

exponential 

 

9 

 

7.145 

 

2.934 

 

2.487 

 

1.933 

 

1.820 

 

1.067 

 

Laplace 

 

6 

 

5.321 

 

2.944 

 

.596 

 

1.998 

 

1.660 

 

1.846 

 

lognormal 

 

113.936 

 

17.577 

 

2.942 

 

6.088 

 

2.187 

 

1.651 

 

1.332 

 

logistic 

 

4.200 

 

3.908 

 

2.945 

 

1.355 

 

1.872 

 

1.757 

 

1.069 

 

Gumbel 

 

5.400 

 

4.719 

 

2.933 

 

1.643 

 

1.865 

 

1.803 

 

1.030 

 

bimodal 

(symmetric) 

 

 

1.720 

 

 

1.737 

 

 

2.940 

 

 

.604 

 

 

1.578 

 

 

2.117 

 

 

.749 

 

bimodal 

(skewed) 

 

 

3.091 

 

 

3.165 

 

 

2.946 

 

 

1.098 

 

 

2.069 

 

 

1.993 

 

 

1.049 

 

mixed-normal 

(symmetric) 

 

 

25.348 

 

 

20.333 

 

 

2.928 

 

 

7.089 

 

 

2.441 

 

 

1.417 

 

 

1.728 

 

mixed-normal 

(skewed) 

 

 

4.553 

 

 

4.682 

 

 

2.948 

 

 

1.622 

 

 

2.108 

 

 

1.678 

 

 

1.261 

 

uniform 

 

1.800 

 

1.827 

 

2.938 

 

.635 

 

1.659 

 

1.999 

 

.833 

 

half-normal 

 

3.869 

 

3.667 

 

2.942 

 

1.273 

 

1.792 

 

1.893 

 

.951 

 

 

 Again, most of the values found for both scores and ranks reflect the values of the population 

distributions. Exceptions are the Laplace, uniform, and symmetric bimodal distributions, which the 

ratios of ranks are somewhat less than those of scores. In the three atypical cases, the initial values of 

kurtosis of the populations are less than those of the other distributions, and are less than the 3.00 of 

the normal distribution. In other words, once again, the degree of “heterogeneity of kurtosis,” with 

respect to a normal density, was inherited by the ranks. Figure 4 shows in more detail relative 

frequency distributions of scores and ranks in samples from a Laplace distribution and a normal 

distribution, and the same thing is evident. 
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Fig. 4. Inheritance of kurtosis of distributions of scores by distributions of ranks. 

 

 

 Table 5 includes comparisons in which both samples 1 and 2 are taken from non-normal 

densities that possibly differ in skewness and kurtosis. The first two columns list the respective 

densities. The outcome is similar to that found in Table 4: A difference in skewness of samples of 

scores is reflected by a similar, although somewhat less, difference in skewness of ranks. 

Furthermore, a difference in kurtosis of samples of scores is reflected in similar and lesser difference 

in kurtosis of ranks, and the ratios show a similar trend.  
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Table 5. Mean coefficients of skewness and kurtosis of scores and ranks in samples from non-normal 

distributions (�1 = �2 = 100). Samples from distributions in the first column were combined with 

Samples from distributions in the second column. 

 

Population 

Distribution 

 

Sample Skewness 

of Scores 

 

Sample Skewness 

of Ranks 

1 2 Sample 1 Sample 2 Sample 1 Sample 2 

 

Gumbel 

 

uniform 

 

1.025 

 

.001 

 

.175 

 

−.133 

 

exponential 

 

Laplace 
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−.003 

 

.340 

 

−.340 

 

Laplace 
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−.017 
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.000 

 

.000 

 

lognormal  

 

exponential 

 

3.201 
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Laplace 
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.006 

 

.465 

 

−.386 

 

logistic 

 

exponential 
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1.797 

 

−.306 

 

.338 

 

 
Population 

Distribution 

 

Sample Kurtosis of Scores 

 

Sample Kurtosis of Ranks 

1 2 Sample 1 Sample 2 Ratio Sample 1 Sample 2 Ratio 

 

Gumbel 

 

uniform 

 

4.681 

 

1.825 

 

2.576 

 

2.038 

 

1.653 

 

1.238 

 

exponential 

 

Laplace 

 

7.196 

 

5.325 

 

1.484 

 

1.801 

 

2.058 

 

.880 
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5.314 

 

1.824 

 

2.925 

 

2.198 

 

1.545 

 

1.427 
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exponential 

 

17.662 

 

7.231 

 

2.929 

 

1.942 

 

1.580 

 

1.233 

 

lognormal 

 

Laplace 

 

17.628 

 

5.311 

 

3.648 

 

2.050 

 

1.888 

 

1.093 

 

logistic 

 

exponential 

 

3.909 

 

7.225 

 

.648 

 

1.902 

 

1.884 

 

1.014 

 

 

Inheritance of outlier-proneness. 

Outliers have played a large role in alteration of Type I and Type II errors of many familiar 

parametric tests, and one desirable feature of nonparametric tests is their reduction of the influence 

of outliers through ranking. The fact that various non-normal densities are outlier-prone and others 

are outlier-resistant was investigated by Neyman & Scott (1971) and Green (1976). However, 

contrary to expectation, it is not true that the influence of outliers is entirely eliminated by ranking. 

Of course, maximum and minimum scores are transformed into maximum and minimum ranks. 
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When ranks are separated in two groups are frequency distributions are plotted as done in the figures 

in the present study, the common influence of outliers on distributions of both scores and ranks 

becomes evident. 

Figure 5 plots relative frequency distributions of samples of scores and ranks from a mixed-

normal distribution, compared to samples from a normal distribution. The mixed-normal distribution 

was obtained by sampling from �(0,1) with probability .9 and from �(5, .1) with probability .1, 

where these values are given in units of a standard deviation. That is, in the mixed-normal case an 

outlying score, approximately 5σ above the mean, occurred with probability .1. The result is a 

clustering of scores far above the mean, as expected, but also a clustering of anomalous ranks 

corresponding to the outlying scores. 
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Fig. 5. Inheritance of susceptibility to outliers of distributions of scores by distributions of 

ranks. 
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Inheritance of bimodality. 

 Figure 6 plots frequency distributions of scores and ranks for a normal distribution compared 

to a symmetric bimodal distribution having two distinct clusters of scores. Figure 7 is the same for a 

skewed bimodal distribution, in which the concentration of scores around the upper mode exceeds 

the concentration around the lower mode. The symmetric bimodal distribution consisted of samples 

from �(1, 1) with probability .5 and from �(−1, 1) with probability .5 and the skewed bimodal 

distribution consisted of samples from �(−.4, .2) with probability .25 and from �(.4, .1) with 

probability .75. It is apparent in the figures that the distribution of ranks again displays features of 

the original distributions. Note that the asymmetry of the distribution of scores in Figure 6 also 

characterizes the ranks, and that the symmetry of the distribution of scores in Figure 7 is preserved 

by the ranks. 
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Fig. 6. Inheritance of bimodality (symmetric). 
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Fig. 7. Inheritance of bimodality (skewed). 

 

 

Properties of three or more sets of ranks from different score distributions. 

 Figures 8, 9, 10, and 11 plot distributions of ranks in three or more groups, resulting from the 

ranking procedure employed in the Kruskal-Wallis test, an extension of the one used in the 

Wilcoxon-Mann-Whitney test. That is, the scores in several groups were all pooled together and 

ranked as a single group, after which the scores in the original groups were replaced by their ranks in 

the combined group. 

 Figure 8 is the result for three symmetric distributions, and Figure 9 is the result for two 

symmetric and one skewed distribution. Figure 10 is the result for four symmetric distributions, and 

Figure 11 is for two symmetric and two skewed distributions. In each case, when all three or all four 
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distributions were symmetric, the resulting distributions of ranks were symmetric. And when one or 

more distributions was skewed, the distributions of ranks were skewed. 
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Fig. 8. Relative frequency distributions of ranks for three distributions of scores (all 

symmetric)  

FURTHER DISCUSSIO� 

 Nonparametric tests, such as the Wilcoxon-Mann-Whitney test and the Kruskal-Wallis test 

maintain the nominal significance level in the case of many non-normal distributions for which t and 

F tests are not robust. Conversion of scores to ranks is an essential feature of these methods. 

Moreover, it has been found that in many cases the power of these nonparametric tests exceeds that 

of their parametric counterparts, often substantially. Although these familiar rank tests are 
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nonparametric distribution-free, other properties of ranks have to be taken into consideration to 

account for power advantages. 
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Fig. 9. Relative frequency distributions of ranks for three distributions of scores (2 symmetric, 

1 skewed). 

 

The fact that ranks themselves can have distributions that are not necessarily rectangular is 

frequently overlooked. If a single group of � scores are transformed to ranks, the distribution of the 

ranks is necessarily rectangular on the integers 1, …, �. However, if scores in two or more groups 

representing different experimental treatments are combined and ranked together, then the separate 

groups of combined ranks are not necessarily rectangular. The present study revealed marked 

similarities between parameters characterizing the distributions of the original scores and statistics 

calculated from the ranks. 
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Fig. 10  Relative frequency distributions of ranks for four distributions of scores (all 

symmetric). 

 

 

It is known that the Wilcoxon-Mann-Whitney test is equivalent to a t test performed on ranks 

replacing scores and that the Kruskal-Wallis test is equivalent to an F test performed on ranks 

(Conover & Iman, 1981). From that perspective, assignment of ranks to scores is a transformation 

similar to replacing scores, say, by their logarithms or by their reciprocals. The equivalence implies 

that “transformation of scores to ranks before performing the t test” is for practical purposes the 

same thing as “performing the Wilcoxon-Mann-Whitney test in place the t test”, and similarly with 

the Kruskal-Wallis test and the F test. 

Researchers usually make a choice between parametric and nonparametric methods after 

examining the distribution of the data at hand. Current findings suggest that the crucial step in the 
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procedure is ranking itself and not the details of calculations done subsequent to ranking. It also 

suggests that the well-established power superiority of nonparametric tests for certain non-normal 

densities is related to the difference between ranks and scores per se and not to the details of 

calculating rank sums. In order to understand the differences in the parametric and nonparametric 

methods, this approach pays attention to features which the original distribution of scores and the 

transformed distribution of ranks have in common, as well as to their differences. 
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Fig. 11  Relative frequency distributions of ranks for four distributions of scores (two 

symmetric, 2 skewed). 
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 The present study indicated that various parameters of the score distributions, including 

differences in variance, skewness, kurtosis, bimodality, and outlier-proneness, are inherited by ranks. 

These measures calculated from ranks are somewhat less in magnitude than the original ones 

calculated from scores. Nevertheless, they are of sufficient magnitude to substantially influence the 

Type I and Type II errors of well-known significance tests in ways similar to the influence of non-

normal data on the t test. For example, a ratio of population standard deviations, σ1/σ2, of 2.00 or 

greater is known to severely compromise the Type I error probability of the t test. After 

transformation to ranks, the ratio is likely to be approximately 1.5 instead of 2. Nevertheless, it is 

still large enough to severely disrupt the Type I error probability of the Wilcoxon-Mann-Whitney 

test. Similar substantial, although somewhat less, differences in skewness, kurtosis, bimodality, and 

outlier-proneness also arise. 

 The shapes of the distributions of ranks found in the present study are consequences of that 

kind of separation of ranks into two groups corresponding 1-1 to the original treatment groups. 

Because the ranks are bounded by the total sample size �1 + �2 of the combined treatment groups, 

the frequencies of ranks in one group are constrained by the frequencies in the other. For this reason 

the shapes of the distributions of ranks are modified somewhat and do not precisely reproduce the 

shapes of the distributions of scores. Moreover, the data in Figures 8, 9, 10, and 11 reveal the same 

inheritance of properties of scores by ranks in designs involving three and four groups, as well as 

similar constraints on the shape of the distributions. 

  It is known that the original version of the Wilcoxon-Mann-Whitney test is sensitive to any 

difference in distributions, not just differences in means. Unequal variances, especially, can modify 

the nominal significance level of the test, analogous to the Behrens-Fisher problem in regard to the 

Student t test (Zimmerman, 1996). There have been several proposals for modifying the Wilcoxon-

Mann-Whitney test in order to allow for unequal variances (see, for example, Brunner & Munzel, 

2000; Cliff, 1996; Neuhauser, Losch, & Jockel, 2007, Wilcox, 2005).  

The present results further suggest the desirability of this approach. Depending on 

characteristics of the original population, which often are not known, sample data may contain 

various differences in sample statistics of treatment groups greater than might be expected. 

Therefore, the Type I and Type II errors of significance tests, both parametric and nonparametric, 

can be altered in unpredictable ways. 
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