Entrenamiento Aeróbico: Efecto Sobre el Estado Oxidativo Hepático. [Aerobic Training: Effect on Liver Oxidative Stress].
Palabras clave:
ejercicio aeróbico, estrés oxidativo, hígado, aerobic training, oxidative stress, liver.Resumen
El objetivo de este estudio fue evaluar en un modelo animal el efecto del entrenamiento aeróbico y del ejercicio eventual sobre el estado oxidativo hepático. Se utilizaron 30 ratones machos NMRI, divididos en 3 grupos de 10: Control (sin ejercicio), Entrenamiento Aeróbico (EA) y Ejercicio Eventual (EE). La actividad física se realizó en una rueda de ejercicio que giraba a 50 rpm/ (30 minutos. día) por 6 semanas para el grupo con EA y a 50 rpm/ 30 minutos, una vez para el EE. Se determinó en sangre la concentración de albúmina, y en hígado se cuantificó la concentración de Dienos Conjugados, Malondialdehido, Glutatión Reducido (GSH), y se realizó el estudio histopatológico. Los resultados muestran que los animales que realizaron EE presentaron un aumento marcado de la lipoperoxidación (LPO) hepática comparado con el grupo control y con los de EA. Con respecto a la respuesta antioxidante, la concentración de GSH aumentó en los animales de EA y disminuyó en los de EE, la albúmina fue menor en los animales que se ejercitaron. El cociente GSH/LPO fue mayor en los animales de EA, lo que indica una disminución de la LPO en relación con la respuesta antioxidante dada por el GSH. Los resultados de este estudio muestran que a pesar de que ocurre un aumento de la lipoperoxidación hepática durante el ejercicio, esta oxidación no altera la estructura histológica del órgano y dependiendo del tipo de ejercicio, el organismo se adapta produciendo aumento de la defensa antioxidante, base esta del entrenamiento.
Abstract
The aim of this study was to evaluate in an animal model the effect of aerobic training on hepatic oxidative status. Control (without exercise) Aerobic Training (EA) and Exercise Eventually (EE): 30 NMRI male mice were divided into 3 groups of 10 were used. Physical activity was conducted in an exercise wheel rotating at 50 rpm / 30 minutes / day / six weeks for the group with AD and 50 rpm / 30 minutes / once for EE. Albumin concentration was determined in blood, liver and the concentration of conjugated diene, malondialdehyde, reduced glutathione (GSH) was measured and histopathological study. The results show that animals made EE showed a marked increase in hepatic lipid peroxidation (LPO) compared with the control group and the EA. Regarding the antioxidant response, the concentration of GSH increased animals decreased in EA and EE and albumin was lower in animals who exercised. The GSH / LPO ratio was greater in animals EA, indicating a decrease in LPO in relation given by the GSH antioxidant response. No liver histopathological changes were observed. The results of this study show that despite an increase in hepatic lipid peroxidation occurs during exercise , this oxidation does not alter the histological structure of the organ and depending on the type of exercise, the body adapts by producing increased antioxidant defense based this training.
http://dx.doi.org/10.5232/ricyde2016.04506
Referencias/references
Ahlborg, G., & Felig, P. (1982). Lactate and glucose exchange across the forearm, legs, and splanchnic bed during and after prolonged exercise. Journal of Clinical Investigation, 69, 45-54.
http://dx.doi.org/10.1172/JCI110440
Ames, B. N. (1983). Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science, 221(1), 256-64.
http://dx.doi.org/10.1126/science.6351251
Aranda, M. R. (2003). Efectos del ejercicio físico agotador sobre el estrés oxidativo asociado al envejecimiento. [Tesis Doctoral].Valencia: Universitat de Valencia. Obtenido en marzo, 07, 2016, disponible en:
http://roderic.uv.es/handle/10550/15102
Arquer, A.; Elousa, R., & Marrugat, J. (2010). Actividad física y estrés oxidativo. Apunts mede sport. 45(165), 31-40.
http://dx.doi.org/10.1016/j.apunts.2009.12.002
Batandier, C.; Guigas, B.; Detaille, D.; El-Mir, M. Y.; Fontaine, E.; Rigoulet, M., & Leverve, X. M. (2006). The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin. Journal of Bioenergetics and Biomembranes, 38(1), 33-42.
http://dx.doi.org/10.1007/s10863-006-9003-8
Bouzid, M.; Hammouda, O.; Matran, R.; Robin, S., & Fabre, C. (2014). Changes in oxidative stress markers and biological markers of muscle injury with aging at rest and in response to an exhaustive exercise. Plos One, 9(3), e90420.
http://dx.doi.org/10.1371/journal.pone.0090420
Bruguera, M. (2004). Hígado y deporte. Medicina Clinica (Barc), 122(3), 111-4.
http://dx.doi.org/10.1016/S0025-7753(04)74159-7
Davies, K. J. (1995). Oxidative stress. The paradox of aerobic life. Biochemical Society Symposium, 6, 1-31.
http://dx.doi.org/10.1042/bss0610001
Duncker, D. J., & Bache, R. J. (2008). Regulation of coronary blood flow during exercise. Physiological reviews, 88(3), 1009-86.
http://dx.doi.org/10.1152/physrev.00045.2006
Fernández, A.; Ulate, M., y Hernández, R. (1994). Factores asociados a la presión arterial en la niñez: resistencia cardiovascular, peso y obesidad. Archivos de Medicina del Deporte, 11,13-19.
Fernández, J. M.; Da Silva-Grigolettob, M. E., y Túnez-Fiñanac, I. (2009). Estrés oxidativo inducido por el ejercicio. Revista Andaluza de Medicina del Deporte, 2(1), 19-34.
Finaud, J.; Lac, G., & Filaire, E. (2006). Oxidative stress: relationship with exercise and training. Sports Medicine, 36(4), 327-58.
http://dx.doi.org/10.1152/physrev.00045.2006
Garatachea, N.; García-López, D.; Bernal, A.; Almar, M., & González-Gallego, J. (2012). 'Oxidative stress response to isometric exercise in women: Effect of age and exercise intensity. International Sportmed Journal, 13(3), 85-95.
Gavarry, O., & Falgairette, G. (2004). L’activité physique habituelle au cours du développement. Revista Canadienne de Physiologie Appliquée, 29, 201-214.
http://dx.doi.org/10.1139/h04-015
Gerecke, K.; Kolobova, A.; Allen, S., & Fawer, J. (2013). Exercise protects against chronic restraint stress-induced oxidative stress in the cortex and hippocampus. Brain Research, 1509, 66-78.
http://dx.doi.org/ 10.1016/j.brainres.2013.02.027
Hultman, E. (1966). Blood circulation in the liver under physiological and pathological conditions. Scandinavian Journal of Clinical and Laboratory Investigation, 18(92), 27-41.
Jammes, Y.; Steinberg, J. G.; Mambrini, O.; Brégeon, F., & Delliaux, S. (2005). Chronic fatigue syndrome: assessment of increased oxidative stress and altered muscle excitability in response to incremental exercise. Journal of Internal Medicine, 257(3), 299-310.
http://dx.doi.org/10.1111/j.1365-2796.2005.01452.x
Jenkins RR. (1988). Free Radical Chemistry, Relationship to Exercise. Sports Medicine, 5(3), 156-70.
http://dx.doi.org/10.2165/00007256-198805030-00003
Ji L, Fu R. (1992). Responses of glutathione system and antioxidant enzymes to exhaustive exercise and hydroperoxide. Journal Of Applied Physiology, 72(2), 549-554.
Ji, L. L. (1999). Antioxidants and oxidative stress in exercise. Proceedings of the Society for Experimental Biology and Medicine, 222, 283–292.
http://dx.doi.org/10.1046/j.1525-1373.1999.d01-145.x
Kjaer, M.; Engfred, K.; Fernandes, A.; Secher, N.H., & Galbo, H. (1993). Regulation of hepatic glucose production during exercise in humans: role of sympatho-adrenergic activity. The American Journal of Physiology, 265, E275-E283.
Kocturk, S.; Kayatekin, B. M.; Resmi, H.; Acikgoz, O.; Kaynak, C., & Ozer, E. (2008). The apoptotic response to strenuous exercise of the gastrocnemius and soleus muscle fibers in rats. European Journal of Applied Physiology, 102, 515–524.
http://dx.doi.org/10.1007/s00421-007-0612-7
Lamb, D. R. (1978). Fisiología del ejercicio. Madrid: Pila AE, 17-23.
Leeuwenburgh, C., & Heinecke, J. W. (2001). Oxidative stress and antioxidants in exercise. Current Medicinal Chemistry, 8(7), 829-38.
http://dx.doi.org/10.2174/0929867013372896
López–Rodríguez, G., y Suárez–Dieguez, T. (2010). La albúmina y la transferrina son antioxidantes que previenen la lipoperoxidación in vitro. Revista Latinoamericana de Química, 38(3), 159-167.
McArdle, A.; Khera, G.; Edwards, R. H., & Jackson, M. J. (1999). In vivo microdialysis-A technique for analysis of chemical activators of muscle pain. Muscle Nerve, 22, 1047-52.
http://dx.doi.org/10.1002/(SICI)1097-4598(199908)22:8<1047::AID-MUS6>3.0.CO;2-Q
McBride, J.M.; Kraemer, W. J.; Triplett-McBride, T., & Sebastianelli, W. (1998). Effect of resistance exercise on free radical production. Medicine and Science in Sports and Exercise, 30(1), 67-72.
http://dx.doi.org/10.1097/00005768-199801000-00010
Milanez, V.; Ramos, S.; Okuno, N.; Boullosa, D., & Nakamura, F. (2014). 'Evidence of a Non-Linear Dose-Response Relationship between Training Load and Stress Markers in Elite Female Futsal Players', Journal Of Sports Science & Medicine, 13(1), 22-29.
Ohkawa, H.; Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Annals of Biochemistry, 95, 351–358.
http://dx.doi.org/10.1016/0003-2697(79)90738-3
Organización Mundial de la Salud. (1946).Carta Constitucional. Ginebra: Organización Mundial de la Salud.
Packer, L.; Maguire, J. J.; Mehlhorn, R. J.; Serbinova, E., & Kagan, V. E. (1989). Mitochondria and microsomal membranes have a free radical reductase activity that prevents chromanoxyl radical accumulation. Biochemical and Biophysical Research Communications, 159(1), 229-35.
http://dx.doi.org/10.1016/0006-291X(89)92427-3
Powers, S. K., & Jackson, M. J. (2008). Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiological Reviews, 88, 1243–1276.
http://dx.doi.org/10.1152/physrev.00031.2007
Reed, P., & Packer, L. (1992). Exercise, oxidative damage and effects of antioxidant manipulation. The Journal of Nutrition, 122, 766–773.
Reid, M. B. (2008). Free radicals and muscle fatigue: Of ROS, canaries, and the IOC. Free Radical Biology Medicine, 44(2), 169-79.
http://dx.doi.org/10.1016/j.freeradbiomed.2007.03.002
Rokitzki, L.; Logemann, E.; Sagredos, A. N.; Murphy, M.; Wetzel-Roth, W., & Keul, J. (1994). Lipid peroxidation and antioxidative vitamins under extreme endurance stress. Acta Physiology Scandinavian, 151(2), 149-58.
http://dx.doi.org/10.1111/j.1748-1716.1994.tb09732.x
Saltin, B., & Astrand, P. O. (1967). Maximal oxygen uptake in athletes. Canadian Journal of Applied Physiology, 23(3), 353-358.
Sánchez-Quesada, J. L.; Holms-Serradesanferm, R.; Serrat-Serrat, J.; Serra-Grima, J. R.; González-Sastre, J. & Ordoñez-Llanos, J. (1995). Increase of LDL susceptibility to oxidation occurring after intense, long duration aerobic exercise. Atherosclerosis, 118, 297–305.
http://dx.doi.org/10.1016/0021-9150(95)05617-3
Sjödin, B.; Hellsten, W.Y., & Apple, F. S. (1990). Biochemical mechanisms for oxygen free radical formation during exercise. Sports Medicine, 10(4), 236-54.
http://dx.doi.org/10.2165/00007256-199010040-00003
Starkov, A. A. (2008). The role of mitochondria in reactive oxygen species metabolism and signaling. Annals of the New York Academy of Sciences, 1147(37), 52-54.
Steinberg, J. G.; Delliaux, S., & Jammes, Y. (2006). Reliability of different blood indices to explore the oxidative stress in response to maximal cycling and static exercises. Clinical Physiology and Functional Imaging, 26(2), 106-12.
http://dx.doi.org/10.1111/j.1475-097X.2006.00658.x
Tiidus, P. M.; Pushkarenko, J., & Houston, M. E. (1996). Lack of antioxidant adaptation to short-term aerobic training in human muscle. American Journal Physiology, 271, R832-6.56
Venditti, P.; Bari, A.; Di Stefano, L. & Di Meo, S. (2007). Role of mitochondria in exercise-induced oxidative stress in skeletal muscle from hyperthyroid rats. Archives of Biochemistry and Biophysics, 463, 12–18.
http://dx.doi.org/10.1016/j.abb.2007.02.004
Wahren, J.; Felig, P.; Ahlborg, G. & Jorfeldt, L. (1971). Glucose metabolism during leg exercise in man. The Journal of Clinical Investigation, 50, 2715-2725.
http://dx.doi.org/10.1172/JCI106772
Wallin, B. B.; Rosengren, H.; Shertzer, G & Camejo. 1993. Lipoprotein oxidation and measurement of thiobarbituric acid reacting substances formation in a single microtiter plate: Its use for evaluation of antioxidants. Anal Biochemical, 208, 10-15.
http://dx.doi.org/10.1006/abio.1993.1002
Wasserman, D. H.; Williams, P. E.; Lacy, D. B.; Green, D. R. & Cherrington, A. D (1988). Importance of intrahepatic mechanisms to gluconeogenesis from alanine during exercise and recovery. American Journal Physiology, 254, 13518-13525.