Análisis de la fuerza isométrica en la propulsión y tracción en slalom en silla de ruedas y su relación con el rendimiento y la clasificación funcional. [Isometric force in wheelchair slalom during traction and propulsion and their relationship with performance and functional classification].

Autores/as

  • Raúl Reina Universidad Miguel Hernández de Elche
  • Manuel Moya Universidad Miguel Hernández de Elche
  • José Manuel Sarabia Universidad Miguel Hernández de Elche
  • Rafael Sabido Universidad Miguel Hernández de Elche

Palabras clave:

parálisis cerebral, deporte, clasificación, fuerza, cerebral palsy, wheelchair sport, classification, strength.

Resumen

El sistema de clasificación del slalom en silla de ruedas contempla como elegibles a deportistas con parálisis cerebral y daño cerebral adquirido. La tendencia actual en los sistemas de clasificación es realizar una clasificación integrada y funcional basada en evidencias científicas. En este estudio participaron 9 deportistas (21,2 ± 4,7 años) de nivel nacional con parálisis cerebral (5 ♂ y 4 ♀) de las divisiones D2, D3 y D4, relacionadas con los perfiles funcionales de la Cerebral Palsy International Sports and Recreation Association. Se realizaron dos pruebas de fuerza máxima isométrica (propulsión y tracción) sobre la silla de competición, donde se midió fuerza máxima (Fmax), fuerza media (Fmed), tiempo de ejecución y tiempo hasta diferentes porcentajes de Fmax. Además, se realizaron dos pruebas de rendimiento específicas: 16 m de desplazamiento lineal con una puerta de inversión situada a 8; y dos desplazamientos lineales de 4 m, realizando un zig-zag de ida y vuelta entre ambos, registrando el tiempo de ejecución con un sistema de cronometraje electrónico. Se encontraron diferencias estadísticamente significativas en las pruebas de propulsión entre los deportistas de D3 y D4 para la Fmax (p = 0,007) y Fmed (p = 0,002), siendo mayores los valores de esta última. En las pruebas de rendimiento específico, se encontraron diferencias entre D2 y D3 (inversión: p = 0,034 y zig-zag: p = 0,010), siendo menores los tiempos de D3. Los resultados muestran que no hay una relación lineal entre las divisiones y el rendimiento mostrado.

Abstract

Athletes with cerebral palsy and acquired cerebral damage are eligible for competition according to the wheelchair slalom classification system. The current trend in the classification systems is to perform an integrated and functional classification based on scientific evidence. Nine national level wheelchair slalom athletes (21,2 ± 4,7 years) from D2, D3 and D4 divisions, as per functional profiles of the Cerebral Palsy International Sports and Recreation Association, took part in the study (5 ♂ and 4 ♀). Participants performed two maximal isometric force tests (propulsion and traction) with their competition wheelchairs in which maximum force (Fmax), average force (Fmed), execution time and time used to reach different Fmax percentages were recorded. In addition, participants carried out two specific performance tests: a 16 m linear sprint with an inversion door after 8 m; and two 4 m linear displacements with a zig-zag round trip. The measured variable was execution time using photocell gates. Significant differences were found between D3 and D4 in propulsion tests for Fmax (p = 0,007) and Fmean (p = 0,002), being this last one higher. Significant statistical differences were found between D2 and D3 in specific performance tests (inversion: p = 0,034 and zig-zag: p = 0,010), being D3 the quickest group. Results show a non-linear relationship between classification divisions and the performance.

http://dx.doi.org/10.5232/ricyde2013.03402

---------------------------------------------------------------------

Referencias/references

Braendvik, S.M, & Roeleveld, K. (2012). The role of co-activation in strength and force modulation in the elbow of children with unilateral cerebral palsy. Journal of Electromyography and Kinesiology, 22(1), 137-144.
http://dx.doi.org/10.1016/j.jelekin.2011.10.002
PMid:22071153

Damiano, D.L.; Dodd, K., & Taylor, N.F. (2002). Should we be testing and training muscle strength in cerebral palsy? Developmental Medicine and Child Neurology, 44(1), 68-72.
http://dx.doi.org/10.1017/S0012162201001682
PMid:11811654

Darainy, M., & Ostry, D. (2008). Muscle cocontraction following dynamics learning. Experimental Brain Research, 190(2), 153-163.
http://dx.doi.org/10.1007/s00221-008-1457-y
PMid:18584164

Foran, J.R.H.; Steinman, S.; Barash, I.; Chambers, H.G, & Lieber, R.L. (2005). Structural and mechanical alterations in spastic skeletal muscle. Developmental Medicine and Child Neurology, 47(10), 713-717.
http://dx.doi.org/10.1017/S0012162205001465
PMid:16174321

Gruber, M., & Gollhofer, A. (2004). Impact of sensoriomotor training on the rate of force development and neural activation. European Journal of Applied Physiology, 92, 98-105.
http://dx.doi.org/10.1007/s00421-004-1080-y
PMid:15024669

Khamoui, A.V.; Brown, L.E.; Nguyen, D.; Uribe, B.P.; Coburn, J. W.; Noffal, G.J., & Tran, T. (2011). Velocity-time characteristics of dynamic and isometric muscle actions. Journal of Strength and Contioning Research, 25, 198-204.
http://dx.doi.org/10.1519/JSC.0b013e3181b94a7b
PMid:19966585

Lance, J.W. (1980). The control of muscle tone, reflexes, and movement: Robert Wartenberg lecture. Neurology, 30(12), 1303–1313.
http://dx.doi.org/10.1212/WNL.30.12.1303
PMid:7192811

Mockford M., & Caulton J.M. (2010). The pathophysiological basis of weakness in children with cerebral palsy. Pediatric Physical Therapy, 20(4), 318–333.
http://dx.doi.org/10.1097/PEP.0b013e31818b7ccd
PMid:19011522

Ross, S.A., & Engsberg, J. R. (2007). Relationships between spasticity, strength, gait, and the GMFM-66 in persons with spastic diplegia cerebral Palsy. Archives of Physical Medicine and Rehabilitation, 88(9), 1114–1120.
http://dx.doi.org/10.1016/j.apmr.2007.06.011
PMid:17826455

Sahaly, R.; Vandewalle, H.; Driss, T., & Monod, H. (2001). Maximal voluntary force and rate of force development in humans: importance of instruction. European Journal of Applied Physiology, 85(3-4), 345-50.
http://dx.doi.org/10.1007/s004210100451

Silva, P.L.; Fonseca, S.T.; Ocarino, J.M.; Gonsalves, P., & Mancini, M.C. (2009). Contributions of cocontraction and eccentric activity to stiffness regulation. Journal of Motor Behavior, 41(3), 207–228.
http://dx.doi.org/10.3200/JMBR.41.3.207-218
PMid:19366654

Tweedy, S.M. (2003). Biomechanical consequences of impairment: A taxonomically valid based for classification in a unified athletics system. Research Quarterly for Exercise and Sport, 74, 9-16.
http://dx.doi.org/10.1080/02701367.2003.10609059

Tweedy, S.M., & Vanlandewijck, Y. (2011). International Paralympic Committee position stand – background and scientific principles of classification in Paralympic sport. British Journal of Sports Medicine, 45, 259-269.
http://dx.doi.org/10.1136/bjsm.2009.065060
PMid:19850575

Vanlandewijck, Y.C.; Verellen, J.; Beckman, E.; Connick, M., & Tweedy, S.M. (2011). Trunk strength effect on track wheelchair start: implications for classification. Medicine and Science in Sports and Exercise, 43(12), 2344-2351.
http://dx.doi.org/10.1249/MSS.0b013e318223af14
PMid:21606875

Vaz, D.V.; Cotta, M.; Fonseca, S.T., & De Melo Pertence, A.E. (2006). Muscle stiffness and strength and their relation to hand function in children with hemiplegic cerebral palsy. Developmental Medicine and Child Neurology, 48(9), 728–733.
http://dx.doi.org/10.1017/S0012162206001563
PMid:16904018

---------------------------------------------------------------------------

Biografía del autor/a

Raúl Reina , Universidad Miguel Hernández de Elche

Centro de Investigación del DeporteAv. de la Universidad s/n, 03202, Elche (Alicante)Telf: 96 522 24 43

Descargas

Archivos adicionales

Publicado

2013-07-15

Número

Sección

Artículos/articles