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Salar de Pedernales basin is located at 3370 meters above sea level in the Atacama Desert, Chile, covering an area of 3620 
km2. This ecosystem is characterized by high exposure to ultraviolet radiation, low humidity, huge variations in ion content and 

in the basin remains poorly documented. Our study assessed compositional changes of planktonic and benthic communities 

stream and lagoon (Pedernales N-E), and their relationship with local physicochemical parameters. Our results show that the 

changes observed in the disturbed habitats. The composition of the invertebrate communities strongly varied among habitats but 
displayed distinct composition in the perturbed ones (Salar Pedernales N-E). Distance-based redundancy analysis revealed that 
phytoplankton and benthos composition were driven by changes in trace metals and nitrate, whereas zooplankton community 
composition was mainly related to osmotic stress. Our data highlight the remarkable biodiversity of the natural water bodies 

: hypersaline ponds, microalgae, invertebrates, extreme environment.
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Hypersaline biotopes, ranging from subtropi-
cal high-altitude lagoons in the Atacama Desert 
to sub-Antarctic lagoons in Patagonia, encom-
pass diverse environments, including permanent 
inland and coastal lagoons or temporary salt-
erns (Cabello, 2021; McGenity & Oren, 2012). 
High-altitude wetlands known as "salars" are dis-

-

(Alvarez, 1984). These habitats are exposed to 
extreme environmental conditions, including in-
tense ultraviolet radiation, minimal precipitation, 

-
cant daily temperature variations (Cabello, 2021; 
Ericksen & Salas, 1990; Payano-Almánzar et al., 
2020). Despite these severe conditions they sup-

and invertebrates, many of which exhibit special-
ized adaptations (Saccò et al., 2021).

The Salar de Pedernales basin is characterized 
by its low precipitation levels (120 to 140 mm /
year) (Risacher et al., 2003) and an evaporation 
rate of 1075 mm/year (de la Fuente et al., 2021). 

It is notable for the accumulation of various min-
erals and metals (Cabello, 2021), making it a zone 

has a history of anthropogenic disturbance; for 
instance, a pipe was deployed in the northwest-
ern of the Salar in the 1930s to obtain water for 
industrial purposes (Risacher et al., 1999), there-
by lowering the level of the phreatic zone in the 
basin.

Salar de Pedernales exhibits strong spatiotem-
poral variability in vegetation and water coverage 
(de la Fuente et al., 2021) leading to local var-
iations in soil moisture and salinity that likely 
promote habitat heterogeneity. The high environ-
mental variability of these ecosystems supports 
diverse communities of organisms, including 
prokaryotes, microalgae, invertebrates, and verte-

2019). Despite their ecological distinctness and 
-

ic organisms in the Salar de Pedernales basin has 
been scarcely studied (Codelco Chile División 
Salvador, 2024).

High Andean systems face increasing threats, 
such as water extraction for productive economic 
purposes (Acosta, 2018; Kesler et al., 2012; 

RESUMEN

Diversidad de comunidades planctónicas y bentónicas en la cuenca de gran altitud del Salar de Pedernales, Desierto de 
Atacama, Chile. 
 
La cuenca del Salar de Pedernales está situada a 3370 metros sobre el nivel del mar en el desierto de Atacama (Chile) y ocupa 

. Este ecosistema se caracteriza por una alta exposición a la radiación ultravioleta, baja humedad, 
enormes variaciones en el contenido de iones y gradientes térmicos extremos. A pesar de estas condiciones extremas, posee 

cambios composicionales de las comunidades planctónicas y bentónicas en varios salares (Pedernales S-O, Piedra Parada, La 

observándose cambios importantes en los hábitats alterados. La composición de las comunidades de invertebrados varió 

Salar de Pedernales y señalan los posibles efectos de la perturbación antropogénica sobre la biota de estos hábitats extremos.
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Liu et al., 2019). These activities pose a risk to 
biodiversity, particularly considering Salar de 
Pedernales is one of the largest basins in the 
southern  Atacama Desert (de la Fuente et al., 2021), 
representing an ecological hotspot that has been 

to describe spatial variations in physicochemical 
properties and their associated biodiversity. 
We assessed changes in the composition of 
microalgae and invertebrate communities across 
natural and anthropogenically impacted habitats. 

the relationship between these communities and 
local physicochemical parameters in the Salar de 
Pedernales basin.

We studied the microalgae and invertebrate 
communities and physicochemical parameters in 
the Salar de Pedernales basin, located in northern 
Chile (26.23° S, 69.12° W), between April and 

basin as a system comprising Salar Pedernales, 
Salar La Laguna, Salar Piedra Parada, and 

3620 km² and its located at approximately 3370 

m altitude in the Atacama Desert (Risacher et 
al., 1999). The basin exhibits heterogeneous 
morphological, climatological, and geological 
characteristics, with sedimentary, volcanic, and 
plutonic rocks (Chong, 1988; Johnson et al., 
2010). To cover the natural heterogeneity across 
the basin, several habitats were sampled (Fig. 
1): Salar Piedra Parada (n=3), Salar La Laguna 
(n=1), Creeks (n=6), wetlands (n=3), Salar 
Pedernales SO (n=5). We also included two cases 
of anthropogenically disturbed habitats, as they 

(n=5), cement constructed for water channeling 

(Risacher et al., 1999).
At each sampling station, the environmental 

conditions were assessed by deploying a 50 m 
transect with subsamples at intervals of 0, 25, and 
50 m. Temperature and conductivity (TetraCon 
325 sensor) were measured at each sampling site 
using a portable WTW Multi 3320 multimeter. 

Hanna HI 98129 pH meter was used. Samples for 
the determination of metals (Cu, Fe, Li, V), met-

Figure 1. A) Zone of study. Salar Pedernales Basin and habitat types (B-H). B) Salar Pedernales SO, C) Salar Pedernales NE, D) 
Salar La Laguna, E) Creek, F) Wetland, G) Salar Piedra Parada, and H) Artificial stream. A) Zona de estudio. Cuenca del Salar de 
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alloids (As, Bo), ions (Cl-, Mg2+, Ca2+, Na+, SO4
2-, 

and K+), total dissolved solids (TDS) and nitrate 
(NO3-) were maintained at dark conditions at 4°C 

laboratory, following the Chilean guidelines for 

triplicate 1 L water samples were collected from 
the water column using a 60-μm net at each sam-
pling site. For the collection of benthic microal-
gae, samples were taken in triplicate using a 10 
cm² scraping area at sites with rocky substrates. 

-
formed using the Utermöhl methodology (Uter-
möhl, 1958) on an Olympus CKX42 inverted 
phase contrast microscope. For each sample, in-
dividuals were counted until the most abundant 

from Biggs & Kilroy, 2000; Cox, 1996; Parra & 
Bicudo, 1996; Rivera et al., 1982; Round et al., 
1990; Sant’Anna, 2006. Microalgae composition-
al data are presented as relative abundance.

Zooplankton samples were obtained in triplicate 
at each sampling site. Sampling was conducted 

waters with a depth of less than 20 cm, a cone 

oriented for 15 min. Zoobenthos was sampled 
using a core of 10 cm internal diameter to obtain 
surface sediments. Collected sediments were 

ethanol. Zooplankton density was expressed as   
the number of individuals per cubic meter (ind/
m3), while zoobenthos density was expressed as 

2). Taxonomic 

Zúñiga, 1985; Bayly, 1992; Dominguez et al., 
1992, 2009; Fernandez & Dominguez, 2001; 

1996; Palma, 2013. For downstream analysis, 
all compositional data are presented as relative 
abundance.

All the statistical analyses were performed with 
R (v4.2.3), using the libraries vegan (Oksanen 
et al., 2022), dplyr (Wickham et al., 2022), and 
microbiome (Lahti & Shetty, 2017). A t-test was 

diversity indices (Pielou evenness and richness) 
between the microalgae and invertebrates. To 

communities dependent on sampling habitat, a 
two-way ANOVA was performed when assump-
tions of normality and homoscedasticity were 

Levene tests, respectively. For the post hoc eval-

test was applied.
Principal component analysis (PCA) on en-

vironment variables was performed using the 
function “princomp” in the vegan package (Ok-
sanen et al., 2022). We calculated the Bray-Curtis 

relative abundances. A PERMANOVA was per-

between the station types. Distance-based redun-
dancy analyses (dbRDA) (Legendre & Anderson, 
1999) were performed on the dissimilarity matrix 
of diatom abundances to elucidate the relation-

-
ence community composition. The pH, tempera-
ture, conductivity, alkalinity, oxygen saturation, 
metals, and minerals were used in this analysis. 
The selection of the most important variables ex-
plaining community composition was conducted 
by a forward selection method on the dbRDA re-
sults (Blanchet et al., 2008).

-
riability

The habitats of the basin featured distinct condi-
-
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cipal component (PC1) represented 48.75% of the 

conductivity, pH, and cations, such as Mg2+, Ca+, 
K+, and SO4

2-. The second principal component 
(PC2) explained 10.31% comprising variations 
in Na, As, Fe, V, and Li changes. Stations were 
distributed mainly along PC1, depending on their 
disturbance status (Fig. 2A). Undisturbed habitats 
were characterized by a high and variable pH and 
lower conductivity than the disturbed ones (Fig. 
2B). Disturbed habitats (Salar Pedernales-NE 

highest conductivity (~200 mS/cm), NO3- (~10 
mg/L), and 100-fold ion concentrations compared 
to the rest of the habitat types (Fig. 2B-E).

stream (Fig. 3). Both, the planktonic and benthic 

p<0.05). Phytoplankton richness ranged from 6 
to 44 taxa (Fig. 3A), Salar Pedernales-SO being 
more diverse than the creek and Salar Pedernales-
NE habitats (Tukey-test p<0.05). Phytobenthos 
richness varied from 6 to 30 taxa, with Salar 

Pedernales-SO featuring higher richness than 
the Salar Piedra Parada (Tukey-test p<0.05). 
The microalgae were characterized by exhibiting 
highly even communities in all habitats (Pielou’s 
evenness > 0.8; Fig. 3C).

The richness of invertebrate communities 

(t-test, p<0.001). Zooplankton and zoobenthos 
communities displayed similar richness (Two-
way ANOVA, p>0.05; Fig. 3B), but were variable 
in terms of community evenness (Two-way 
ANOVA, p<0.05; Fig. 3D). Evenness in Salar 

zoobenthos from Salar Pedernales-SO and the 
creek communities (Tukey-test, p<0.05), and so 
were the creek, Salar La Laguna and the wetland 
communities (Tukey-test, p<0.05).

The microalgae communities of the Salar de 
Pedernales Basin were compositionally similar 

4A). A species cluster was observed in the stations 

composition from the other habitats (Fig. 4B). The 
microalgae community was largely dominated 
by diatoms, with  and genera 
being the most abundant in Salar Piedra Parada, 
creeks, and wetlands habitats. Amphora spp., 

Figure 2. Environmental variables of Salar Pedernales Basin and main contributors to brine variability. A) Principal components 
analysis (PCA) with the habitat type, B) Conductivity and pH, C) NO3

-, Na+ and SO4
2-) and E) minor ions 

(Li+, Ca+, Mg2+ and K+). Variables ambientales de la cuenca del Salar de Pedernales y principales contribuyentes a la variabilidad 

3
- + y SO4 ) y E) menores (Li+, Ca+, Mg  y K+).
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Figure 3. Richness (A, B) and Pielou evenness (C, D) of microalgae and invertebrate communities of Salar Pedernales Basin. 

Figure 4. Beta diversity of microalgae (A), invertebrates (C) of Salar de Pedernales Basin. Relative abundances of microalgae (B) 
and invertebrates (D). Beta diversidad de microalgas (A), invertebrados (C) de la cuenca del Salar de Pedernales. Abundancia rela-
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while widespread, was only abundant in the Salar 
Pedernales-SO and -NE, whereas spp. 
strongly proliferated in Salar Pedernales-NE (Fig. 
4B).

The invertebrate community exhibited higher 
variability than the microalgae (Fig. 4A, 4C). 
The planktonic and benthic communities in lentic 
habitats had great taxonomic variability. They 

wetland stations, where both, zooplankton and 
zoobenthos were highly similar (Fig. 4C). Benthic 
communities tended to cluster together, possibly 
related to the presence of the Branchiopoda 
crustacea Artemia and the Chironomidae diptera 
Cricotopus, with Artemia standing out in the 
Salar Pedernales-NE (Fig. 4D).

-
vironmental variables were structuring local com-
munities according to trophic level and life his-
tory (Table 1). The phytoplankton communities 
were related to temperature, NO3-, As, Fe, and 
Li+ (Table 1, Forward selection, p<0.05), whereas 

+, Fe 
was one of the most important variables for struc-
turing the invertebrate communities, followed by 
Na, temperature and Li (Table 1, Forward selec-

tion, p<0.05).

This study shows that Salar de Pedernales basin 
presents a high biodiversity of microalgae and 
invertebrates. Moreover, anthropogenic impacts 

Pedernales is an isolated and heterogeneous eco-
system that historically has faced anthropogenic 
pressure, including water extraction, mineral and 
metal mining. 

Studies on the diversity of eukaryotic organisms 
in salar ecosystems are scarce, especially in the 
Salar de Pedernales (Codelco Chile División 
Salvador, 2024). Changes in phytoplanktonic 
communities were mainly bottom-up driven, as 

concentrations, nutrient availability and tempera-
ture in the dbRDA results (Table 1). Phytobenthic 

in potassium. While potassium has been consid-
ered to be unrelated to growth rates (Jaworski et 
al., 2003), osmotic stress may act as a selective 
force on the community, as supported by studies 
on transcriptional regulation in euryhaline dia-

. Distance-based RDA (dbRDA) using the Bray- Curtis distances of the different community types with environmental 
variables selected with a forward selection. 
tipos de comunidades con variables ambientales seleccionadas con un “forward selection”.

Community type Variable 2 F p-value

Microalgae Plankton

As 0.18 4.68 0.001**

Fe 0.13 3.76 0.048*

Temperature 0.07 2.21 0.008*

Li+ 0.07 2.16 0.032*

NO3
- 0.07 2.36 0.029*

Benthos K+ 0.12 2.87 0.005**

Invertebrate
Plankton

Na- 0.12 2.72 0.010*

Fe 0.11 2.71 0.012*

Benthos

Fe 0.13 3.15 0.006**

Li+ 0.08 2.07 0.034*

Temperature 0.08 2.03 0.047*

**: p<0.01; *: p<0.05
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toms (Nakov et al., 2020). Invertebrate communi-
ties for both, planktonic and benthonic life histo-
ries responded to trace metal variability, probably 
aligned with phytoplankton growth-related fac-
tors. In addition, we observed that the planktonic 
invertebrate communities responded to osmotic 
stress in agreement with experiments demonstrat-

-
ton biomass and body size (Ersoy et al., 2022).

Both microalgae and invertebrate communities 
are recognized as important components of the 
local trophic web, sustaining for example local 

& Redón, 2019; Tobar et al., 2012). The 
microalgae community was mostly represented 
by Bacillariophyta, organisms known for their 
high saline tolerance (Balycheva et al., 2023) 
and zoochory (Quevedo-Ortiz et al., 2024). To 

Chilean salars are related to either new species 
description, new isolates (i.e., Rivera et al., 
2018; Rivera & Cruces, 2009, 2015), indirect 

as chlorophyll-a) and cyanobacteria (Dorador 
et al., 2008, 2013). Surprisingly, invertebrate 
communities were heterogeneous and diverse, 
characterized by the presence of crustaceans, 
nematodes, dipterans, and coleopterans (Fig. 
4D). These results contrast with observations on 
other hypersaline habitats, such as Laguna La 
Brava (Salar de Atacama), about 180 km north 
of the Pedernales basin, where only few common 

were detected (Dorador et al., 2018).

Pedernales Basin

The survey through the Pedernales Basin 
revealed high natural variability among the 
sampled habitats, with a clear distinction between 
undisturbed and anthropogenically disturbed 
habitats (Fig. 2A). Both disturbed habitats (Salar 

increased conductivity, NO3- concentration and 

registered across the undisturbed habitats (Fig. 
2). While in Salar Pedernales-NE, the community 

revealed a drastic absence of organisms (Fig. 

observations in other anthropogenically disturbed 
habitats, where activities like water irrigation for 
agriculture, coal or salt mining were found to alter 
local hydromorphology and to cause importance 
changes in the properties of water bodies and on 

2013; Stenger-Kovács et al., 2023). For instance, 
increasing mineral weathering has been shown 
to cause an increase in dissolved salt content, 
alkalinity, nitrate levels (Montross et al., 2013), 
and a decrease in pH (Kaushal et al., 2018).

the organismic groups according to trophic 
position and life history. While compositional 
changes were observed across habitats, the 
response of communities varied depending on the 
level of disturbance (Fig. 4). At Salar Pedernales 

shifts in species composition. In contrast, in the 

conductivity and low pH (Fig. 1; Fig. 2) might 
be unsuitable for the sustainment of microalgae 
and invertebrate lifeforms (Fig. 3). This particular 
case can be taken as an example of the magnitude 

compared to the overall diversity of the basin.
The mining industry poses a risk to the bio-

diversity of salars due to potential habitat loss 
(Sonter et al., 2018). For instance, the extraction 
of economically valuable minerals, such as lithi-
um, involves pumping groundwater into a series 

large areas. In addition, this process can lower 
phreatic water levels, disrupting the natural water 
balance and reducing water availability (Flexer et 

of increasing lithium extraction pressure (Liu et 
al., 2019), accompanied by desiccation exacerbat-
ed by water extraction, could lead to even more se-
vere water scarcity (Parker et al., 2024). Since the 
Salar de Pedernales basin is an geographically iso-
lated area, a reduction in habitats size could nega-
tively impact not only on local species but also on 

et al., 2022).
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Biological indicators

Microalgae in the perturbed habitats were 
characterized by a dominance of the genera Amphora 
and  (Fig. 4B). Amphora is known to be 
dominant in benthic freshwater systems related to 
increasing nitrogen and phosphorus availability 
(Cvetkoska et al., 2018). Indeed, Amphora spp. has 
been isolated and grown at eutrophic conditions, 
such as municipal wastewater (Harini et al., 2023). 
Similarly, the  genus has been described 
as highly adaptable (Vidal et al., 2021), serving as 

in the context of organic pollution (Saros et al., 
2005), as also supported by paleolimnological 
records (Stoermer, 1993). 

In the invertebrate communities, Artemia spp. 
dominated at disturbed conditions (Fig. 4D). This 
increase in abundance might be related to its re-
markable tolerance to hypersaline conditions (Ga-

enter a state of dormancy at unfavorable environ-
mental conditions (Hand et al., 2016). These char-
acteristics make Artemia one of the most widely 

& Sorgeloos, 2000).

-
croalgae and invertebrate communities of the Sal-
ar de Pedernales basin. By collecting data from 

in the ionic composition in the anthropogenically 
perturbed habitats which caused shifts in biodi-
versity and community composition. Our inves-
tigation thus sheds light on the vulnerability of 
the Salar de Pedernales basin and its associated 
biodiversity to anthropogenically driven habitat 
deterioration.
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