MODELOS PARA LA ESTIMACION DE LA PRODUCCION DE CORCHO EN ALCORNOCALES

G. MONTERO¹
E. TORRES²
I. CANELLAS¹
C. ORTEGA¹
¹Area de Selvicultura y Mejora Forestal. CIFOR-INIA
Apdo. de Correos 8111. 28080 Madrid
²Dpto. Forestal, SIA-Extremadura
Apdo. 22. 06080 Badajoz

RESUMEN

En el presente trabajo se describen varios modelos para la predicción del corcho producido por árbol y superficie. La producción de corcho por árbol se estima según un modelo lineal sin término independiente utilizando como variable única el producto de la circunferencia normal (sobre o bajo corcho) y la altura de descorch. Para la producción de corcho por superficie se determina un modelo que considera la calidad de la estación y los tratamientos selvícolas. Se describe el modo de aplicar estos modelos en la inventariación de la producción de corcho en alcornoques.

PALABRAS CLAVE: Alcornoque
Quercus suber
Corcho
Selvicultura
Modelos de producción

INTRODUCCION

La producción corchera de un alcornocal puede cuantificarse por dos procedimientos:
- Mediante la realización de un inventario, y el empleo de una tabla de estimación del peso de corcho producido por cada árbol (similar a las tablas de cebación de maderas utilizadas en otras especies forestales).

Recibido: 22-3-96
Aceptado para su publicación: 5-7-96

- Mediante el empleo de tablas que estiman la producción de corcho por unidad de superficie (similares a las tablas de producción para especies productoras de madera).

En la primera forma de proceder, las condiciones ecológicas tienen una importancia relativa, que se manifiestan en el individuo por la variación de los caracteres biométricos, los más importantes de los cuales entran en la ecuación de predicción, de manera que las tablas de estimación de peso para árboles individuales pueden referirse a zonas ecológicas considerablemente amplias. La producción de corcho por metro cuadrado de superficie descorchada, que estima la calidad de la estación y varía lógicamente con ésta, limita en la práctica la generalización anterior.

Sin embargo, las tablas de producción de corcho por unidad de superficie dependen, fundamentalmente, de la calidad de la estación y de los tratamientos selvícolas o silvopascícolas aplicados al alcornoque, por lo cual las estimaciones habrán de hacerse para zonas ecológicas más restringidas. Para salvar esta fuerte limitación, que obligaría a realizar una tabla para cada pequeña zona sometida a condiciones microecológicas, se recurre a modelos predictivos en los que intervengan las variables que mayor influencia tienen en la producción.

En este trabajo presentamos los modelos de estimación de peso de corcho para árboles individuales referidas a las seis principales zonas de producción corchera descritas por Montero (1987) y un modelo de estimación de la producción de corcho por hectárea basado en la densidad de la masa, la intensidad de descorche que está soportando y la cantidad de corcho producido por m² de superficie descorchada.

ELABORACION DE TABLAS DE ESTIMACION DEL PESO DE CORCHO EN PIE

Antecedentes

La elaboración de tablas para estimar el peso de corcho en pie se basa fundamentalmente en un análisis multivariante de las variables que caracterizan al alcornoque como productor de corcho.

El objetivo de estas tablas es proporcionar el peso medio de corcho de un árbol a partir de unas variables medidas previamente sobre éste, mediante una expresión matemática que traduce, o pretende traducir, la ley de variación del peso de corcho en función de las variables que se hayan introducido en el modelo predictivo.

La información bibliográfica sobre el tema es muy escasa y casi toda procedente de investigadores portugueses. Nunes de Mexia (1934) relaciona la pro-
ducción de corcho con varios caracteres biométricos del alcornoclo. Aparte de determinar la forma y dimensiones óptimas de la copa del alcornoclo para la producción de corcho, calculó las correlaciones que había entre otras variables y la superficie de descorche y, estableció ecuaciones de regresión con dos y tres variables independientes, que daban el valor de la superficie de descorche en función de la circunferencia normal, del número de ramas descorchadas y de la altura del fuste.

Vieira Natividade (1950) en su obra Subericultura presenta un ábaco que da el peso de corcho en función de la circunferencia normal sobre corcho (CSC) y la altura de descorche (HD), con dos escalas diferentes, según el árbol esté descorchado sólo en tronco o en tronco y ramas, y permite una estimación bastante aproximada del corcho producido por árbol.

Gomes Guerreiro (1951) hace una primera selección de las variables que más pueden influir en el peso del corcho. Termina recomendando que para facilitar la toma de datos bastaría con incluir una sola variable en la ecuación, ya que con la circunferencia normal sobre corcho se obtiene una precisión equivalente a la obtenida con un mayor número de variables.

Monteiro Alves (1958) realiza un estudio exhaustivo sobre tablas de estimación de corcho en pie. Una vez conocidas y analizadas las correlaciones lineales de cada variable con el peso de corcho, hace una comparación analítica entre ellas para escoger la mejor ecuación lineal en la que intervienen la circunferencia normal sobre corcho y la altura de descorche como variables independientes. Igualmente representa la ecuación en un gráfico en el que se da el peso de corcho en función de esas dos variables.

Monteiro y Morais (1961) publican otra tabla de estimación del peso de corcho, esta vez para la región portuguesa del Plioceno, al Sur del Tajo, en la cual llegan a conclusiones similares a las obtenidas en el trabajo anterior.

Montero (1987) lleva a cabo la modelización de la producción de corcho, utilizando ecuaciones diferentes para cada una de las zonas geográficas con presencia importante de alcornocal. Los resultados de esta investigación aparecen en la primera parte de este artículo.

Ferreira y Carvalho (1991) a su vez también abordan el problema utilizando el enfoque de la regresión lineal. Igualmente concluyen la necesidad de utilizar ecuaciones distintas para cada zona productiva (determinan once para Portugal), así como la eficacia de la superficie teórica de descorche (CSC*HD) como variable explicativa.

Elección de variables

Basándose en los trabajos que brevemente hemos comentado y que abarcan zonas de alcornoclo de distintas características ecológicas y selvícolas, y en el conocimiento del alcornoclo como productor de corcho, parece lógico aceptar
que si se quiere buscar un modelo lo más perfecto posible se deben incluir en él todas las variables regresoras que se crean que tienen influencia en la producción de corcho por árbol. Las variables consideradas a priori han sido: HF: altura del fuste (m); HD: altura de descorcé (m); CSC: circunferencia normal sobre corcho (m); CBC: circunferencia normal bajo corcho (m); SN: área de la sección normal bajo corcho (dm²); CB: calibre del corcho (cm); CD: coeficiente de descort; ID: intensidad de descorcé; SPC: superficie de proyección de la copa (m²); SD: superficie de descorcé (m²); PCM2: peso de corcho por metro cuadrado de superficie descorchada; PC: peso de corcho producido por árbol (kg).

Para detectar el grado de correlación entre las variables se construyó una matriz de correlación (Tabla 1). Las variables más correlacionadas con el peso de corcho producido por árbol (PC) son por orden de mayor a menor las siguientes: superficie de descorcé, circunferencia sobre corcho, altura de descorcé, circunferencia bajo corcho, área de la sección normal y superficie de proyección de la copa.

TABLA 1

MATRIZ DE CORRELACION DE TODAS LAS VARIABLES SELECCIONADAS

Correlation matrix of selected variables

<table>
<thead>
<tr>
<th></th>
<th>PC</th>
<th>PCM2</th>
<th>CSC</th>
<th>CBC</th>
<th>HF</th>
<th>HD</th>
<th>SPC</th>
<th>SD</th>
<th>SN</th>
<th>CD</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PCM2</td>
<td>0.123</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSC</td>
<td>0.855</td>
<td>0.016</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBC</td>
<td>0.834</td>
<td>-0.074</td>
<td>0.989</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>0.412</td>
<td>0.181</td>
<td>0.336</td>
<td>0.281</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD</td>
<td>0.851</td>
<td>-0.090</td>
<td>0.829</td>
<td>0.807</td>
<td>0.439</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPC</td>
<td>0.762</td>
<td>0.003</td>
<td>0.752</td>
<td>0.704</td>
<td>0.228</td>
<td>0.708</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>0.907</td>
<td>-0.142</td>
<td>0.893</td>
<td>0.896</td>
<td>0.319</td>
<td>0.877</td>
<td>0.712</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN</td>
<td>0.826</td>
<td>-0.083</td>
<td>0.944</td>
<td>0.967</td>
<td>0.283</td>
<td>0.754</td>
<td>0.669</td>
<td>0.906</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>0.288</td>
<td>0.354</td>
<td>0.242</td>
<td>0.136</td>
<td>0.138</td>
<td>0.164</td>
<td>0.307</td>
<td>0.147</td>
<td>0.097</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>0.305</td>
<td>-0.126</td>
<td>0.164</td>
<td>0.047</td>
<td>0.301</td>
<td>0.591</td>
<td>0.223</td>
<td>0.326</td>
<td>0.100</td>
<td>-0.080</td>
<td>1</td>
</tr>
<tr>
<td>ID</td>
<td>0.0349</td>
<td>-0.182</td>
<td>0.225</td>
<td>0.038</td>
<td>0.182</td>
<td>0.571</td>
<td>0.712</td>
<td>0.415</td>
<td>0.121</td>
<td>0.105</td>
<td>0.753</td>
</tr>
</tbody>
</table>

Correlaciones no significativas estadísticamente. El resto de los coeficientes son significativos al 0,01 p. 100

El grupo de variables más correlacionadas con el peso de corcho coincide básicamente con las variables manejadas por otros autores, lo que indica la estabilidad de la influencia de las mismas sobre la producción de corcho en distintas regiones ecológicas y en masas de alcornoque sometidas a diferentes tratamientos selvícolas.
MODELOS PRODUCCION DE CORCHO

Si eliminamos la superficie de descorché como variable regresora, por ser su determinación muy laboriosa, la sección normal por no aportar más información que la circunferencia bajo corcho, que es además un variable de medición directa, y la superficie de proyección de la copa por ser difícil de medir y presentar grandes variaciones con la realización de podas, nos quedan como variables más relacionadas con la producción de corcho las siguientes: circunferencia sobre corcho, altura de descorché y circunferencia bajo corcho.

Lógicamente, en cualquier modelo predictivo que incluya a una de las dos circunferencias (sobre o bajo corcho) como variable regresora, no tiene sentido incluir también la otra, pues el información que podría aportar la segunda sería mínima dada su alta correlación con la primera.

Selección de ecuaciones de predicición

A la vista de las consideraciones anteriores se ajustó la siguiente ecuación de regresión:

\[PC = a_0 + a_1 \cdot \text{CSC} + a_2 \cdot \text{HD} \]

Este modelo se ajustó para cada una de las zonas\(^1\), obteniéndose coeficientes de correlación comprendidos entre 0,83 y 0,87 según zonas, siendo en todos los casos la regresión altamente significativa.

Por si alguna de las restantes variables que figuran en la matriz de correlación pudiera tener por sí sola, o en combinación con otra, cierta influencia en la estimación de la producción de corcho, se aplicó a los datos el procedimiento de regresión paso a paso que selecciona las variables regresoras según el porcentaje de la variable dependiente que explica cada una de ellas cuando se las considera aisladamente o en combinación con otras. La variable que no contribuye de

\(^1\) Observando la distribución del alcornoque en España, se aprecia la existencia de seis grandes zonas corcheras, diferenciadas principalmente por su localización geográfica, su clima y su vegetación y, en cierta medida, por el suelo, así como por los tratamientos selvícolas efectuados. Las seis zonas son las siguientes:

Zona 1: Localizada principalmente en las provincias de Badajoz (vertiente Sur de la Sierra de San Pedro) y Cáceres (vertiente Norte de la Sierra de San Pedro, Montánchez, Sierra de Miravete y La Vera).
Zona 2: Las masas de alcornocal incluidas en esta zona se extienden por las provincias de Badajoz (Montes de Jerez de los Caballeros, Oliva de la Frontera y Sierras de Fregenal).
Zona 3: Se localizan las masas de esta zona en la provincia de Huelva (Sierras de Aracena y Tudía y Montes de Cala, Arroyomolinos de León y Santa Olalla) y los situados en el término de Cabeza de Vaca (Badajoz).
Zona 4: Las masas de alcornoques situadas en esta zona se hallan localizadas en la provincia de Sevilla (Cazalla de la Sierra, Constantina, Los Pedroches, etc.) y Sierras Morena (Córdoba).
Zona 5: Se trata de los alcornocales del macizo del Algieve y Sierras del Campo de Gibraltar, en las provincias de Cádiz y Málaga.
Zona 6: Estos alcornocales se encuentran en las provincias de Barcelona (comarca de El Vallés) y en Gerona (comarca de La Selva, Las Gabarras, el Alto y Bajo Ampurdán y en la Costa Brava).

manera significativa a mejorar la bondad del ajuste es eliminada del mismo, y el proceso continúa hasta alcanzar la fase en que ninguna variable puede ser eliminada o cambiada por otra sin una pérdida de información para el modelo predictivo.

El modelo no mejora a partir de que han entrado CSC y HD, lo que confirma que son las variables que mejor explican la producción de corcho. Confirmado el mejor comportamiento de las variables CSC y HD, se intentó mejorar los ajustes anteriores probando ecuaciones en las que entrasen estas mismas variables y su producto, y obtener los resultados para cada zona por separado.

Las variables probadas en esta fase fueron las siguientes: CSC, HD, CSC², HD², CSC•HD, CSC•HD² y CSC•HD³. Para determinar cual de estas variables o sus combinaciones aporta más información se calcularon para cada zona todas las ecuaciones de regresión que son posibles con 1, 2, 3, ..., k variables, y posteriormente se selecciona la ecuación óptima para cada subconjunto según el número de variables. El resultado de este análisis lleva a seleccionar como mejor ecuación en cada zona una de la forma

\[PC = a_0 + a_1 \cdot CSC \cdot HD \]

Las ecuaciones obtenidas para cada zona, así como los estadísticos que indican la bondad de la regresión se presentan en la Tabla 2. Estas ecuaciones podrán ser utilizadas para estimar el peso del corcho cuando las variables CSC y HD hayan sido medidas inmediatamente antes del descorche. Las ecuaciones con CBC•HD como variable independiente podrán ser utilizadas para estimar el corcho extraído con posterioridad a la realización del descorche y aparecen también en la Tabla 2.

Las ecuaciones obtenidas proporcionan el peso de corcho con buena precisión cuando se trata de árboles con superficie de descorche mayor de 2 m², obteniéndose errores relativos inferiores al 5 p. 100. Para árboles con menos de 2 m² de superficie de descorche los errores son considerables y, en algún caso, inadmisibles. Esto se debe al gran peso que tiene la ordenada en el origen \(a_0 \) sobre los árboles más pequeños que hace que la predicción sea inferior al valor real. En árboles más grandes la influencia de \(a_0 \) es mucho menor, al menos en términos relativos, y los errores de la estimación se mantienen francamente bajos. El término \(a_0 \) tiene el efecto de posicionar la recta dentro del plano definido por los ejes cartesianos formados por CSC•HD (o CBH•HD) y PC, desplazándola, paralelamente a sí misma, hacia arriba o hacia abajo, y no tiene en general un sentido biológico. Los valores negativos de \(a_0 \) pueden deberse a que el corcho segundero

2 Debido al gran número de pies con HD menor a 1,3 m en la Zona 6 (Cataluña), se ha obtenido también una ecuación de predicción en función de la circunferencia medida sobre bornizo (CSB), cuya aplicación será útil dado el alto porcentaje de árboles de estas características en esta Zona.
TABLA 2

COEFICIENTES Y ESTADISTICOS DE LOS AJUSTES DE LA ECUACIÓN CON TERMINO INDEPENDIENTE a_0

Parameters, correlation coefficient and F-ratio for the fitted models with intercept parameter

<table>
<thead>
<tr>
<th>Zona</th>
<th>Ecuaciones</th>
<th>r^2</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona 1</td>
<td>$PC= -2,10+9,86 CSC\cdot HD$</td>
<td>0,9361</td>
<td>32120,1**</td>
</tr>
<tr>
<td></td>
<td>$PC= -1,02+11,0 CBC\cdot HD$</td>
<td>0,9066</td>
<td>17512,1**</td>
</tr>
<tr>
<td>Zona 2</td>
<td>$PC= -1,81+8,06 CSC\cdot HD$</td>
<td>0,9471</td>
<td>19525,8**</td>
</tr>
<tr>
<td></td>
<td>$PC= 0,86+8,56 CBC\cdot HD$</td>
<td>0,9431</td>
<td>17961,8**</td>
</tr>
<tr>
<td>Zona 3</td>
<td>$PC= -5,72+9,26 CSC\cdot HD$</td>
<td>0,9587</td>
<td>12513,7**</td>
</tr>
<tr>
<td></td>
<td>$PC= -3,80+9,74 CBC\cdot HD$</td>
<td>0,9515</td>
<td>10557,9**</td>
</tr>
<tr>
<td>Zona 4</td>
<td>$PC= -6,11+11,68 CSC\cdot HD$</td>
<td>0,9214</td>
<td>13534,0**</td>
</tr>
<tr>
<td></td>
<td>$PC= -3,92+13,04 CBC\cdot HD$</td>
<td>0,9129</td>
<td>6802,0**</td>
</tr>
<tr>
<td>Zona 5</td>
<td>$PC= -0,73+11,79 CSC\cdot HD$</td>
<td>0,9471</td>
<td>8549,4**</td>
</tr>
<tr>
<td></td>
<td>$PC= -1,62+13,19 CBC\cdot HD$</td>
<td>0,9388</td>
<td>6457,4**</td>
</tr>
<tr>
<td>Zona 6</td>
<td>$PC= -1,88+12,59 CSC\cdot HD$</td>
<td>0,8764</td>
<td>1456,6**</td>
</tr>
<tr>
<td></td>
<td>$PC= -0,03+12,93 CBC\cdot HD$</td>
<td>0,8577</td>
<td>1211,1**</td>
</tr>
<tr>
<td></td>
<td>$PC= -1,46+11,57 CSB\cdot HD$</td>
<td>0,8834</td>
<td>5669,2**</td>
</tr>
</tbody>
</table>

Significación al 99 p. 100

tiene menos densidad que el corcho de reproducción y es lógicamente más abundante en árboles pequeños que en los de mayor tamaño\(^3\), y a la existencia de árboles de gran tamaño en el otro extremo de la recta. El hecho de que en algunas ecuaciones a_0 no sea significativamente distinto de cero, y que cambie de signo según se ajuste el peso de corcho en función de $CSC\cdot HD$ o $CBC\cdot HD$ hace considerar la posibilidad de que la existencia de este término que aparece en el modelo muestral pudiera no existir en el modelo poblacional.

El coeficiente de regresión a_1 representa la pendiente de la recta y mide la variación de PC cuando aumenta o disminuye una unidad la variable $CSC\cdot HD$ o $CBC\cdot HD$. En ambos casos la variable regresora está estimando una superficie de descorche teórica distinta de la superficie de descorche real (SD), por lo cual las unidades del eje de abcisas no son unidades reales, y por consiguiente, a_1 no está estimando solamente PCM2, sino el producto PCM2\cdot CF\(_1\), siendo:

$$CF_1= (SD/CSC\cdot HD) \ y \ CF_2= (SD/CBC\cdot HD)$$

\(^3\) Se denomina corcho segundo al corcho extraído en la segunda pela del árbol. En la primera pela que se realiza cuando el árbol tiene al menos 60 cm de circunferencia normal, se obtiene corcho bornizo cuyas cualidades tecnológicas no permiten dedicarlo más que a la trituración, usos artesanales o decoración. En la tercera pela y sucesivas se obtiene el denominado corcho de reproducción que, debido a sus características físico-químicas, es el que mayor número de aplicaciones tiene y, por tanto, el que mayor valor unitario alcanza.

Estos son coeficientes de forma de la superficie descorchada, CF₁ es casi un artificio matemático válido para corregir la superficie teórica (CSC•HD), pues esta última está calculada con CSC y, SD se calcula con CBC. Por el contrario el coeficiente CF₂ tiene un significado real de coeficiente de forma. Conocido el sentido biológico de a₁ se pueden expresar las ecuaciones de predicción así:

\[PC = a_0 + PCM2•CF₁•CSC•HD \]

La baja significación estadística del coeficiente \(a_0 \) y su escaso significado biológico inducen a investigar el modelo sin término independiente, es decir determinar la recta que pasando por el origen se ajuste mejor a la nube de datos. La decisión de forzar su paso por el origen se justifica también si consideramos que para árboles con HD=0 la superficie de descorche es nula y por consiguiente el peso de corcho por ellos producido es también cero. Por tanto también se ha realizado, para cada una de las zonas, el ajuste de las siguientes ecuaciones:

\[PC=a_1•CSC•HD \] \[PC=a_2•CBC•HD \]

La metodología de los ajustes es la misma. Las ecuaciones sin término para cada una de las zonas y con la variable independiente CSC•HD o CBC•HD, así como los estadísticos que indican la bondad del ajuste⁴, se presentan en la Tabla 3.

Las ecuaciones anteriores son rectas que pasan por el origen y se caracterizan porque en ellas el producto del coeficiente de forma, CF₁ o CF₂, por PCM2 se mantiene constante.

Una forma sencilla y práctica de comparar las ecuaciones de predicción, con y sin término independiente, es comparar los valores de la variable dependiente (PC) para valores iguales de la variable independiente, en cada uno de los modelos. En la Tabla 4 se presenta esta comparación para la variable independiente CSC•HD. De igual manera se trabajaría con la variable CBC•HD. Tras realizar esa comparación se puede deducir lo siguiente:

- Para valores de CSC•HD o CBC•HD menores o iguales a 2 m² el modelo sin término independiente proporciona valores de PC más reales que el modelo con término independiente.
- Para valores de la variable independiente comprendidos entre 2 y 10 m², entre los cuales se encuentran la mayoría de los árboles, los valores PC estimados son prácticamente iguales en ambos modelos.

⁴ Los valores de \(r^2 \) y F son siempre mayores en el modelo sin término independiente, pero estos valores no son comparables de forma directa, por cuanto están calculados a partir de expresiones distintas en cada modelo.
TABLA 3

COEFICIENTES Y ESTADISTICOS DE LA ECUACION

SIN TERMINO INDEPENDIENTE \(a_0 \)

Parameter, correlation coefficient and F-ratio for the fitted models without intercept parameter

<table>
<thead>
<tr>
<th>Zona</th>
<th>Ecuaciones</th>
<th>(r^2)</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona 1</td>
<td>PC= 9,14 CSC+HD</td>
<td>0,9720</td>
<td>76275,6**</td>
</tr>
<tr>
<td></td>
<td>PC= 10,69 CBC+HD</td>
<td>0,9705</td>
<td>59412,6**</td>
</tr>
<tr>
<td>Zona 2</td>
<td>PC= 7,85 CSC+HD</td>
<td>0,9794</td>
<td>51951,6**</td>
</tr>
<tr>
<td></td>
<td>PC= 9,67 CBC+HD</td>
<td>0,9784</td>
<td>48946,2**</td>
</tr>
<tr>
<td>Zona 3</td>
<td>PC= 9,32 CSC+HD</td>
<td>0,9763</td>
<td>22234,8**</td>
</tr>
<tr>
<td></td>
<td>PC= 9,07 CBC+HD</td>
<td>0,9755</td>
<td>21456,6**</td>
</tr>
<tr>
<td>Zona 4</td>
<td>PC= 10,53 CSC+HD</td>
<td>0,9625</td>
<td>17200,0**</td>
</tr>
<tr>
<td></td>
<td>PC= 12,21 CBC+HD</td>
<td>0,9633</td>
<td>17045,5**</td>
</tr>
<tr>
<td>Zona 5</td>
<td>PC= 11,70 CSC+HD</td>
<td>0,9763</td>
<td>19732,1**</td>
</tr>
<tr>
<td></td>
<td>PC= 13,44 CBC+HD</td>
<td>0,9748</td>
<td>16276,4**</td>
</tr>
<tr>
<td>Zona 6</td>
<td>PC= 11,43 CSC+HD</td>
<td>0,9893</td>
<td>18602,6**</td>
</tr>
<tr>
<td></td>
<td>PC= 13,94 CBC+HD</td>
<td>0,9884</td>
<td>17159,1**</td>
</tr>
<tr>
<td></td>
<td>PC= 9,96 CSB+HD</td>
<td>0,9758</td>
<td>30217,9**</td>
</tr>
</tbody>
</table>

**** Significación al 99 p. 100

TABLA 4

COMPARACION DE LOS PESOS DE CORCHO DE REPRODUCCION (kg) ESTIMADOS POR LOS MODELOS CON Y SIN TERMINO INDEPENDIENTE \((a_0) \) EN FUNCION DE CSC+HD

Comparasion of cork weight estimated (kg) by model \((a_0 \cdot \text{CSC+HD})\) with and without intercept parameter \((a_0)\)

<table>
<thead>
<tr>
<th>Zona 1</th>
<th>con (a_0)</th>
<th>con (a_0)</th>
<th>sin (a_0)</th>
<th>sin (a_0)</th>
<th>con (a_0)</th>
<th>con (a_0)</th>
<th>sin (a_0)</th>
<th>sin (a_0)</th>
<th>con (a_0)</th>
<th>con (a_0)</th>
<th>sin (a_0)</th>
<th>sin (a_0)</th>
<th>con (a_0)</th>
<th>con (a_0)</th>
<th>sin (a_0)</th>
<th>sin (a_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,8 5,3</td>
<td>7,8 17,6</td>
<td>27,5 37,3</td>
<td>47,2 57,1</td>
<td>66,9 76,8</td>
<td>86,6 96,5</td>
<td>106,4</td>
<td>4,6 6,8</td>
<td>9,1 18,3</td>
<td>27,4 36,6</td>
<td>45,7 54,8</td>
<td>64,0 73,1</td>
<td>82,3 91,4</td>
<td>100,5</td>
<td>3,9 5,9</td>
<td>7,8 15,7</td>
</tr>
<tr>
<td>Zona 2</td>
<td>con (a_0)</td>
<td>2,2 4,2</td>
<td>6,2 14,3</td>
<td>22,4 30,4</td>
<td>38,5 46,5</td>
<td>54,6 62,6</td>
<td>70,7 78,8</td>
<td>86,8</td>
<td>3,9 5,9</td>
<td>7,8 15,7</td>
<td>23,6 31,4</td>
<td>39,3 47,1</td>
<td>55,0 62,8</td>
<td>70,7 78,5</td>
<td>86,4</td>
<td></td>
</tr>
</tbody>
</table>

Para valores de la variable independiente mayores de 10 m² el modelo sin a_0 proporciona valores ligeramente inferiores que el modelo con a_0, sin que en ningún caso el error relativo de la estimación sobrepase el 2 p. 100 que puede considerarse como muy pequeño.

Las comparaciones y observaciones realizadas unidas a las justificaciones biológicas, parecen aconsejar el empleo de las ecuaciones sin término independiente a_0 para la estimación de la producción pie a pie de corcho en montes alcornocales.

Las ecuaciones obtenidas pueden ser tabuladas, dando el valor de PC en función de la circunferencia normal (sobre o bajo corcho) y la altura de descorche, agrupadas ambas en clases de rango apropiado para facilitar su uso y aplicación. Esta información se presenta en las Tablas del Anexo I para las seis zonas geográficas ya comentadas y para las variables CSC o CBC.

Aplicación de las ecuaciones de predicción

La estimación del peso de corcho producido por un monte alcornocal puede simplificarse mediante la utilización de una ecuación que exprese el peso de corcho en función de la circunferencia sobre o bajo corcho y la altura de descorche obtenidas en un inventario.

La diferencia entre aplicar una ecuación para la estimación del corcho o aplicar valores modulares⁵, aunque esos hayan sido obtenidos de la misma muestra que se ha utilizado para estimar la ecuación, radica en que la ecuación traduce, o pretende traducir, la ley de variación del peso de corcho en función de determinadas variables, lo que permite contemplar mejor la generalidad de los casos, incluso aquellos que por cualquier causa no hayan entrado en la muestra.

La aplicación de una tabla de estimación del peso de corcho, supone que los árboles con idéntica circunferencia y la misma altura de descorche producen una misma cantidad de corcho. Estas imprecisiones deben de ser compensadas con una tabla que estime el peso de corcho por medio de un procedimiento práctico, económico y lo más preciso posible. Para conseguirlo, debemos reducir y simplificar al máximo la toma de datos necesarios, manteniendo la precisión dentro de límites aceptables.

Para determinar la producción de corcho por unidad de superficie (parcela, cantón, tramo, cuartel, monte) se procede exactamente igual que al aplicar las

⁵ Se denominan valores modulares a los valores medios de una determinada variable, en este caso el peso de corcho en los árboles de una determinada clase diamétrica (o clase de circunferencia), pertenecientes a una muestra representativa de la masa a inventariar.
tablas de cubicación de madera en otras especies forestales. El procedimiento a seguir debe ser el siguiente:

En inventarios por muestreo:

- Medición de circunferencias de todos los árboles de la parcela (unidad elemental de muestreo).
- Medición de alturas de descorch de todos los árboles de la parcela.
- Agrupación de los árboles por clases de circunferencia y por clases de altura de descorch, cuantificando el número de árboles de cada grupo.
- Determinación del peso de corcho, como producto del número de árboles por el valor unitario de la tabla para cada grupo.
- Determinación de la producción total de la parcela, como suma del corcho producido por cada grupo.
- Determinación de la producción referida a la hectárea y a la superficie total del cantón, tramo, cuartel, monte, etc.

En inventarios por conteo pie a pie:

En este caso puede procederse de igual forma que en el caso anterior, midiendo circunferencia y altura de descorch en todos los árboles. Con esta forma de proceder se obtiene buena precisión en los resultados pero su costo es mayor. Dependiendo de la precisión deseada y del tamaño e irregularidad de la masa inventariada puede ser suficiente, en los inventarios por conteo pie a pie, con medir una muestra entre el cinco y el quince por ciento de las alturas de descorch. En masas con pocos árboles por hectárea y gran tamaño de éstos, como es frecuente en gran parte de las dehesas extremeñas y andaluzas, la variación morfológica de la parte descorkada suele ser mayor, lo que aconseja medir un porcentaje mayor de alturas de descorch, que en aquellas en las que por su mayor densidad la altura de descorch suele ser menor y la forma de la superficie descorkada menos irregular.

Con la muestra de árboles en los que se ha medido HD, pueden establecerse valores modulares de HD por clase de circunferencia, y aplicar dichos valores a la clasificación diamétrica, de tal forma que a todos los árboles comprendidos en un intervalo de circunferencia como los que aparecen en la tabla, se les asigna una misma altura de descorch. La precisión obtenida según este procedimiento será mayor o menor, dependiendo del tamaño de la muestra y de la variabilidad de las alturas de descorch dentro de cada clase de circunferencia.

Otra forma de proceder consiste en ajustar una ecuación de regresión de HD en función de la circunferencia (CSC o CBC). Las alturas de descorch correspondientes a cada clase de circunferencia se toman de los ajustes previamente realizados con la muestra de árboles en los que se ha medido HD. Este procedi-
miento, muy utilizado para cálculo de existencias en los inventarios forestales cuando se utilizan tablas de cubicación de madera, puede dar buen resultado en el caso del alcornque, siempre que el ajuste de alturas a circunferencias sea bueno. Nosotros hemos encontrado para grandes zonas de alcornocal coeficientes de correlación mayores de 0,8 y es de suponer que la correlación mejore para un monte, cuartel, tramo o cantón dado, en los cuales la variabilidad de los datos será menor.

ESTIMACION DE LA PRODUCCION DE CORCHO POR UNIDAD DE SUPERFICIE

Antecedentes

Como ya se dijo en la introducción, la estimación de la producción de corcho por unidad de superficie de alcornocal depende fundamentalmente de la calidad de la estación y del tratamiento selvícola o silvopascícola que se esté aplicando, por lo cual las estimaciones habrán de hacerse para zonas ecológicas lo más homogéneas posibles y sometidas a idéntico tratamiento selvícola. Por lo general la influencia de los factores ecológicos y de los tratamientos selvícolas no son independientes; así la altura de descorche suele ser mayor en las zonas bajas y llanas que en las zonas con menor disponibilidad hídrica, debido a que el corcho se da (se desprende) mejor en las primeras. En los alcornocales más adehesados las alturas de descorche suelen ser mayores que en aquellos que viven en mayor espesura, pues las dehesas suelen estar sobre zonas más llanas, con suelos más profundos y fértiles y los árboles son más gruesos, condiciones que permiten alcanzar mayores alturas de descorche y pueden hacer rentable un aprovechamiento de pastos más intenso, por lo cual el gestor no debe mantener más de un determinado número de árboles por hectárea, que siempre es menor del necesario para obtener la máxima producción de corcho. En ocasiones la densidad es tan baja que el alcornque constituye un simple accidente en el paisaje (Vieira, 1950).

Los montes alcornocales (no adehesados) suelen encontrarse en zonas de cumbres y media ladera, los suelos son más someros y pobres y los árboles más delgados, condiciones que limitan en cierta medida la altura de descorche. El matorral de especies leñosas domina o sustituye a las herbáceas, el aprovechamiento ganadero, a base de cabras, cerdos y animales de caza, no se ve favorecido por una menor densidad de la masa, por lo que el número de pies por hectárea puede y debe ser mayor que en los alcornocales adehesados. La máxima superficie de descorche por hectárea debe conseguirse en estos montes con un mayor número de pies, dado que su diámetro y altura de descorche son menores.
En general, puede afirmarse que las situaciones especiales de microclima, suelo, pendiente, exposición y tratamiento silvopastoral dado al alcornoal originan características diferenciales de las variables de masas que determina la producción de corcho. Estas variaciones no tienen gran importancia desde el punto de vista de la producción potencial, pero sí en la determinación de la producción real actual. Además las masas de alcornoques no se reparten superficialmente en grandes áreas homogéneas ni en calidad ni en densidad sino, más frecuentemente, por pequeños rodales enclavados en alguna de las situaciones especiales referidas. Esta variabilidad ecológica y selvícula de los alcornocales hace difícil la aplicación de cualquier modelo que intente predecir la producción por hectárea si no intervienen en él las variables que reflejan más directamente la selvicultura aplicada.

Modelo de producción de corcho por hectárea

La producción de corcho por hectárea en un alcornocal viene determinada por:

- La calidad de la estación medida en este caso por el peso de corcho extraído por metro cuadrado de superficie descorchada (PCM2).

- Los tratamientos selvícolas aplicados, y dentro de éstos tiene especial influencia:

 - El área basimétrica (AB), que parece un mejor indicador de la densidad que el número de pies por hectárea, puesto que no depende del tamaño de los árboles.

 - La intensidad de descorche media de la masa (IDM) que refleja el número de metros cuadrados que están siendo descorchados por cada metro cuadrado de área basimétrica. Este indicador de la presión de descorche que está soportando la masa es más preciso que el coeficiente de descorche (CD) y la altura de descorche (HD).

Conocidos los valores de estas tres variables se puede calcular la producción de corcho con toda precisión mediante la identidad:

\[
PC=AB\cdot IDM\cdot PCM2 \quad (Montero, Grau, 1988)
\]

El área basimétrica de un rodal, tramo de saca, área anual de descorche, etc, puede ser determinada de un modo económico mediante un muestreo de parcelas de radio variable con un relascopio de Bitterlich. Su valor óptimo no está bien determinado para los distintos tipos de alcornoal, pero en general, puede decirse que en montes cuya producción principal es el corcho su valor no debe ser inferior a los 9-10 m² contabilizando solamente los árboles descorchados, y
pudiendo llegar a un valor máximo entre los 20 y 25 m² (Montero et al., 1986, 1993). En montes con alta producción de pastos (montes adehesados) puede ser económicamente rentable, para la producción conjunta del monte, mantener niveles más bajos de densidad, procurando que el área basimétrica no baje de los 6-7 m². Valores inferiores no suelen aumentar la producción de pasto y bajan la producción de corcho. La posibilidad que tiene el selvicultor de modificar el valor de AB mediante los tratamientos selvícolas le permite orientar la producción del monte en función de la importancia que desee dar a la producción de pastos y corcho.

El valor medio del peso de corcho por metro cuadrado (PCM2) puede determinarse por medio de un muestreo realizado en la pila o en los puntos de reunión y cargadero, midiendo la superficie y el peso de un determinado número de panas seleccionadas al azar. Numerosos propietarios y gestores conocen de forma empírica el valor medio de PCM2 para su monte. El valor medio de PCM2 se mantiene sensiblemente constante para un amplio intervalo de intensidad de descorche y de densidad de la masa. Esta propiedad le hace ser un buen indicador de la calidad productiva de las masas de alcornoque (Montoya, 1985, 1988).

La intensidad media de descorche de la masa (IDM) puede ser fijada por el selvicultor, dentro de un cierto intervalo (no bien determinado) que varía con la densidad de la masa, sin que se produzca la pérdida de calibre del corcho y disminución de PCM2. La experiencia y los datos que disponemos aconsejan no superar el valor de IDM = 35 (Montero, Grau, 1986) por las siguientes razones:

- No provocar pérdidas en los valores del calibre del corcho y los kilogramos producidos por metro cuadrado de superficie descorchada (PCM2).
- No ocasionar excesivos daños fisiológicos al árbol al descorchar una excesiva superficie.
- Valores altos de IDM obligan a descorchar numerosas ramas, lo que trae como consecuencia:

 • Mayor riesgo para el operario y mayor probabilidad de producir heridas al árbol.
 • La realización de un cuello⁶ en cada rama descorchada es una operación costosa y susceptible de causar peligrosas heridas al árbol.
 • Muchas veces el corcho de las ramas altas tiene un calibre tan bajo que hace antieconómica su extracción.

- Desde un punto de vista económico parece más racional orientar la selvicultura del alcornoque hacia la consecución de masas más densas que permitan

⁶Corte horizontal que se realiza en toda la circunferencia del tronco o de las ramas y que determina la altura máxima de extracción del corcho.
aplicar una menor intensidad de descorche y rebajar los costos de extracción del corcho.

En gran parte de nuestros alcornocales se están aplicando intensidades de descorche superiores a 40-45. Esta excesiva presión de descorche viene determinada por la baja densidad de nuestros alcornocales y por la tendencia de los propietarios a obtener la máxima superficie de descorche por hectárea.

Esta forma de estimar y orientar la producción es muy similar conceptualmente a las tablas de producción de madera para Selvicultura variable, en las cuales para una calidad de estación, estimada generalmente por la altura dominantes, y para un régimen de claras determinado, se predice la producción de madera (Pita, 1967). En el caso de la producción de corcho la calidad productiva se estima por medio de los kilogramos de corcho por metro cuadrado de superficie descorchada (PCM2) y la variable del tratamiento selvícola regulando el área basimétrica (AB) y la intensidad de descorche (IDM). El manejar estas dos variables simultáneamente, en lugar de la superficie de descorche que contiene a ambas, presenta la ventaja de permitir que el selvicultor pueda conocer la importancia que tiene cada una de ellas en la producción de corcho, y la conveniencia selvícola de manejar ambos conceptos. El control de estas dos variables ofrece al gestor del monte un abanico de posibilidades de actuación. La opción más aconsejable en cada caso será función de la orientación que quiera darse al aprovechamiento del monte.

Construcción de tablas

Sobre una muestra de 75 parcelas tomada en distintas zonas de producción corchera se han medido las principales variables de madera que determinan la producción de corcho por hectárea. Estudiada la correlación de cada variable con la producción de corcho (kg/ha) se ha tabulado el modelo para distintos valores de AB, IDM y PCM2 en la Tabla 5 (Montero, Grau 1988). Su sencillez y alto significado biológico, junto con las connotaciones selvícolas que contiene, hacen de este modelo un instrumento válido para estimar la producción de corcho y orientador de la selvicultura que se está aplicando en el alcornoval.

<table>
<thead>
<tr>
<th>IDM = 30</th>
<th>AB</th>
<th>PCM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>720</td>
<td>840</td>
<td>960</td>
</tr>
<tr>
<td>900</td>
<td>1080</td>
<td>1200</td>
</tr>
<tr>
<td>1080</td>
<td>1280</td>
<td>1500</td>
</tr>
<tr>
<td>1440</td>
<td>1800</td>
<td>2160</td>
</tr>
<tr>
<td>2160</td>
<td>2640</td>
<td>3240</td>
</tr>
<tr>
<td>2560</td>
<td>3200</td>
<td>4000</td>
</tr>
<tr>
<td>3200</td>
<td>4000</td>
<td>5120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDM = 31</th>
<th>AB</th>
<th>PCM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>2400</td>
<td>2940</td>
<td>3600</td>
</tr>
<tr>
<td>2880</td>
<td>3600</td>
<td>4608</td>
</tr>
<tr>
<td>3504</td>
<td>4320</td>
<td>5472</td>
</tr>
<tr>
<td>4320</td>
<td>5472</td>
<td>6912</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDM = 32</th>
<th>AB</th>
<th>PCM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>7200</td>
<td>8888</td>
<td>10646</td>
</tr>
<tr>
<td>9000</td>
<td>11664</td>
<td>14112</td>
</tr>
<tr>
<td>9990</td>
<td>12294</td>
<td>15036</td>
</tr>
<tr>
<td>12294</td>
<td>15036</td>
<td>19324</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDM = 33</th>
<th>AB</th>
<th>PCM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>7200</td>
<td>8888</td>
<td>10646</td>
</tr>
<tr>
<td>9000</td>
<td>11664</td>
<td>14112</td>
</tr>
<tr>
<td>9990</td>
<td>12294</td>
<td>15036</td>
</tr>
<tr>
<td>12294</td>
<td>15036</td>
<td>19324</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDM = 34</th>
<th>AB</th>
<th>PCM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>416</td>
<td>552</td>
<td>684</td>
</tr>
<tr>
<td>520</td>
<td>664</td>
<td>808</td>
</tr>
<tr>
<td>664</td>
<td>832</td>
<td>1064</td>
</tr>
<tr>
<td>832</td>
<td>1064</td>
<td>1344</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDM = 35</th>
<th>AB</th>
<th>PCM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>416</td>
<td>552</td>
<td>684</td>
</tr>
<tr>
<td>520</td>
<td>664</td>
<td>808</td>
</tr>
<tr>
<td>664</td>
<td>832</td>
<td>1064</td>
</tr>
<tr>
<td>832</td>
<td>1064</td>
<td>1344</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDM = 36</th>
<th>AB</th>
<th>PCM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>844</td>
<td>1008</td>
<td>1296</td>
</tr>
<tr>
<td>1008</td>
<td>1344</td>
<td>1728</td>
</tr>
<tr>
<td>1344</td>
<td>1728</td>
<td>2256</td>
</tr>
<tr>
<td>1728</td>
<td>2256</td>
<td>2916</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDM = 37</th>
<th>AB</th>
<th>PCM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>844</td>
<td>1008</td>
<td>1296</td>
</tr>
<tr>
<td>1008</td>
<td>1344</td>
<td>1728</td>
</tr>
<tr>
<td>1344</td>
<td>1728</td>
<td>2256</td>
</tr>
<tr>
<td>1728</td>
<td>2256</td>
<td>2916</td>
</tr>
</tbody>
</table>

TABLA 5

PRODUCCION DE CORCHO EN kg/ha DE IDM, AB, PCM2

Corck production in kg/ha in function of IDM, AB and PCM2

<table>
<thead>
<tr>
<th>IDM = 30</th>
<th>AB</th>
<th>PCM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>720</td>
<td>840</td>
<td>960</td>
</tr>
<tr>
<td>900</td>
<td>1080</td>
<td>1200</td>
</tr>
<tr>
<td>1080</td>
<td>1280</td>
<td>1500</td>
</tr>
<tr>
<td>1440</td>
<td>1800</td>
<td>2160</td>
</tr>
<tr>
<td>2160</td>
<td>2640</td>
<td>3240</td>
</tr>
<tr>
<td>2560</td>
<td>3200</td>
<td>4000</td>
</tr>
<tr>
<td>3200</td>
<td>4000</td>
<td>5120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDM = 31</th>
<th>AB</th>
<th>PCM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>4744</td>
<td>5888</td>
<td>7296</td>
</tr>
<tr>
<td>5900</td>
<td>7080</td>
<td>8880</td>
</tr>
<tr>
<td>7080</td>
<td>8880</td>
<td>11080</td>
</tr>
<tr>
<td>8880</td>
<td>11080</td>
<td>13680</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDM = 32</th>
<th>AB</th>
<th>PCM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>4744</td>
<td>5888</td>
<td>7296</td>
</tr>
<tr>
<td>5900</td>
<td>7080</td>
<td>8880</td>
</tr>
<tr>
<td>7080</td>
<td>8880</td>
<td>11080</td>
</tr>
<tr>
<td>8880</td>
<td>11080</td>
<td>13680</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDM = 33</th>
<th>AB</th>
<th>PCM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>4744</td>
<td>5888</td>
<td>7296</td>
</tr>
<tr>
<td>5900</td>
<td>7080</td>
<td>8880</td>
</tr>
<tr>
<td>7080</td>
<td>8880</td>
<td>11080</td>
</tr>
<tr>
<td>8880</td>
<td>11080</td>
<td>13680</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDM = 34</th>
<th>AB</th>
<th>PCM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>4744</td>
<td>5888</td>
<td>7296</td>
</tr>
<tr>
<td>5900</td>
<td>7080</td>
<td>8880</td>
</tr>
<tr>
<td>7080</td>
<td>8880</td>
<td>11080</td>
</tr>
<tr>
<td>8880</td>
<td>11080</td>
<td>13680</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDM = 35</th>
<th>AB</th>
<th>PCM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>4744</td>
<td>5888</td>
<td>7296</td>
</tr>
<tr>
<td>5900</td>
<td>7080</td>
<td>8880</td>
</tr>
<tr>
<td>7080</td>
<td>8880</td>
<td>11080</td>
</tr>
<tr>
<td>8880</td>
<td>11080</td>
<td>13680</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDM = 36</th>
<th>AB</th>
<th>PCM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>4744</td>
<td>5888</td>
<td>7296</td>
</tr>
<tr>
<td>5900</td>
<td>7080</td>
<td>8880</td>
</tr>
<tr>
<td>7080</td>
<td>8880</td>
<td>11080</td>
</tr>
<tr>
<td>8880</td>
<td>11080</td>
<td>13680</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDM = 37</th>
<th>AB</th>
<th>PCM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>4744</td>
<td>5888</td>
<td>7296</td>
</tr>
<tr>
<td>5900</td>
<td>7080</td>
<td>8880</td>
</tr>
<tr>
<td>7080</td>
<td>8880</td>
<td>11080</td>
</tr>
<tr>
<td>8880</td>
<td>11080</td>
<td>13680</td>
</tr>
</tbody>
</table>

AB: Area basimétrica; **PCM2:** Peso de corcho por m² de superficie descortada; **IDM:** Intensidad de descorche media de la masa.
TABLA 5 (continuación)
PRODUCCION DE CORCHO EN kg/ha DE IDM, AB, PCM2

Cor references in kg/ha in function of IDM, AB and PCM2

<table>
<thead>
<tr>
<th>IDM = 38</th>
<th>PCM2</th>
<th>IDM = 39</th>
<th>PCM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td></td>
<td>AB</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>916</td>
<td>1041</td>
<td>1216</td>
</tr>
<tr>
<td>5</td>
<td>1140</td>
<td>1250</td>
<td>1370</td>
</tr>
<tr>
<td>6</td>
<td>1344</td>
<td>1450</td>
<td>1560</td>
</tr>
<tr>
<td>7</td>
<td>1538</td>
<td>1640</td>
<td>1750</td>
</tr>
<tr>
<td>8</td>
<td>1756</td>
<td>1860</td>
<td>1970</td>
</tr>
<tr>
<td>9</td>
<td>1940</td>
<td>2050</td>
<td>2160</td>
</tr>
<tr>
<td>10</td>
<td>2092</td>
<td>2200</td>
<td>2310</td>
</tr>
<tr>
<td>11</td>
<td>2270</td>
<td>2380</td>
<td>2490</td>
</tr>
<tr>
<td>12</td>
<td>2450</td>
<td>2560</td>
<td>2670</td>
</tr>
<tr>
<td>13</td>
<td>2650</td>
<td>2760</td>
<td>2870</td>
</tr>
<tr>
<td>14</td>
<td>2926</td>
<td>3036</td>
<td>3146</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDM = 40</th>
<th>PCM2</th>
<th>IDM = 41</th>
<th>PCM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td></td>
<td>AB</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>934</td>
<td>1049</td>
<td>1224</td>
</tr>
<tr>
<td>5</td>
<td>1159</td>
<td>1274</td>
<td>1449</td>
</tr>
<tr>
<td>6</td>
<td>1384</td>
<td>1509</td>
<td>1684</td>
</tr>
<tr>
<td>7</td>
<td>1604</td>
<td>1729</td>
<td>1904</td>
</tr>
<tr>
<td>8</td>
<td>1829</td>
<td>1954</td>
<td>2129</td>
</tr>
<tr>
<td>9</td>
<td>2054</td>
<td>2184</td>
<td>2359</td>
</tr>
<tr>
<td>10</td>
<td>2279</td>
<td>2404</td>
<td>2579</td>
</tr>
<tr>
<td>11</td>
<td>2504</td>
<td>2629</td>
<td>2804</td>
</tr>
<tr>
<td>12</td>
<td>2729</td>
<td>2854</td>
<td>3029</td>
</tr>
<tr>
<td>13</td>
<td>2954</td>
<td>3079</td>
<td>3254</td>
</tr>
<tr>
<td>14</td>
<td>3179</td>
<td>3304</td>
<td>3479</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDM = 42</th>
<th>PCM2</th>
<th>IDM = 43</th>
<th>PCM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td></td>
<td>AB</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>940</td>
<td>1055</td>
<td>1230</td>
</tr>
<tr>
<td>5</td>
<td>1159</td>
<td>1274</td>
<td>1449</td>
</tr>
<tr>
<td>6</td>
<td>1384</td>
<td>1509</td>
<td>1684</td>
</tr>
<tr>
<td>7</td>
<td>1604</td>
<td>1729</td>
<td>1904</td>
</tr>
<tr>
<td>8</td>
<td>1824</td>
<td>1949</td>
<td>2124</td>
</tr>
<tr>
<td>9</td>
<td>2054</td>
<td>2179</td>
<td>2354</td>
</tr>
<tr>
<td>10</td>
<td>2279</td>
<td>2404</td>
<td>2579</td>
</tr>
<tr>
<td>11</td>
<td>2504</td>
<td>2629</td>
<td>2804</td>
</tr>
<tr>
<td>12</td>
<td>2729</td>
<td>2854</td>
<td>3029</td>
</tr>
<tr>
<td>13</td>
<td>2954</td>
<td>3079</td>
<td>3254</td>
</tr>
<tr>
<td>14</td>
<td>3179</td>
<td>3304</td>
<td>3479</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDM = 44</th>
<th>PCM2</th>
<th>IDM = 45</th>
<th>PCM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td></td>
<td>AB</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>940</td>
<td>1055</td>
<td>1230</td>
</tr>
<tr>
<td>5</td>
<td>1159</td>
<td>1274</td>
<td>1449</td>
</tr>
<tr>
<td>6</td>
<td>1384</td>
<td>1509</td>
<td>1684</td>
</tr>
<tr>
<td>7</td>
<td>1604</td>
<td>1729</td>
<td>1904</td>
</tr>
<tr>
<td>8</td>
<td>1824</td>
<td>1949</td>
<td>2124</td>
</tr>
<tr>
<td>9</td>
<td>2054</td>
<td>2179</td>
<td>2354</td>
</tr>
<tr>
<td>10</td>
<td>2279</td>
<td>2404</td>
<td>2579</td>
</tr>
<tr>
<td>11</td>
<td>2504</td>
<td>2629</td>
<td>2804</td>
</tr>
<tr>
<td>12</td>
<td>2729</td>
<td>2854</td>
<td>3029</td>
</tr>
<tr>
<td>13</td>
<td>2954</td>
<td>3079</td>
<td>3254</td>
</tr>
<tr>
<td>14</td>
<td>3179</td>
<td>3304</td>
<td>3479</td>
</tr>
</tbody>
</table>

Models for the prediction of cork production in cork oak stands

In this paper we describe several models for the prediction of cork production by tree and super-
face. Cork production by tree was predicted with a lineal model without independent coefficient in
function of breast height girth by bark stripping length, how one only variable. Cork production by
superfice was determineted with a model that considers the site and silvicultural treatments. We show
the way to use these models in the cork production inventories of cork oak stands.

KEY WORDS: Cork oak
Quercus suber
Cork
Silviculture
Production models

REFERENCIAS BIBLIOGRAFICAS

FERREIRA M. C., CARVALHO OLIVEIRA A. M., 1991. Modelling cork oak production in
Portugal. Agroforestry systems, 16: 41-54.
MONTEIRO ALVES A., 1958. Tabelas de previsao do peso de cortiça para o sobreiro nos xistos do
Cortiça, 275. Lisboa.
MONTERO G., 1987. Modelos para cuantificar la produccion de corcho en alcornoques (Quercus
suber L.), en funcion de la calidad de la estacion y de los tratamientos silvícias INIA. Tesis
Doctorales. Madrid.
MONTERO G., GRAU J. M., 1986. El coeficiente y la intensidad de descorche. Ventajas y inconve-
nientes de su aplicacin. I Congreso Florestal Nacional de Portugal. Lisboa.
MONTERO G., GRAU J. M., MONTOYA J. M., 1986. Consideraciones sobre la densidad y la pro-
duccion de los montes alcornoques. I Congreso Florestal Nacional de Portugal. Lisboa.
MONTERO G., GRAU J. M., 1988. Calculo da producao de cortiça em funcion do tratamento silvíc-
MONTERO G., TORRES E., SUAREZ M. A., ORTEGA C., 1993. Influencia de la densidad de la
masa en la calidad y produccion de corcho en los alcornoques de Cortes de la Frontera (Málaga).
MONTOYA J. M., 1985. Aproximación al conocimiento del crecimiento y producción de Quercus
Lisboa.
Agricultura. Madrid.
(Edición española por el Mº de Agricultura, Madrid, 1991.)
<table>
<thead>
<tr>
<th>CBC</th>
<th>ALTIMETRIA</th>
<th>ALTURA DE DESCORCHE (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>1,1</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td>1,3</td>
<td>1,4</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>1,6</td>
</tr>
<tr>
<td></td>
<td>1,7</td>
<td>1,8</td>
</tr>
<tr>
<td></td>
<td>1,9</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>2,1</td>
<td>2,2</td>
</tr>
<tr>
<td></td>
<td>2,3</td>
<td>2,4</td>
</tr>
<tr>
<td></td>
<td>2,5</td>
<td>2,6</td>
</tr>
<tr>
<td></td>
<td>2,7</td>
<td>2,8</td>
</tr>
<tr>
<td></td>
<td>2,9</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>3,1</td>
<td>4,0</td>
</tr>
<tr>
<td></td>
<td>4,5</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td>5,5</td>
<td>6,0</td>
</tr>
<tr>
<td></td>
<td>6,5</td>
<td>7,0</td>
</tr>
</tbody>
</table>

TABLA 1

Peso de corcho obtenidos por la aplicación de la fórmula PC = 10,69 * CBC * HD1

Zona n° 1: Vertientes Norte y Sur de la Sierra de San Pedro; Turno de Descorche: 9 años

Cork weight estimated by model PC=10.69 * CBC * HD; Zone 1: North and South of Sierra de San Pedro; stripping rotation: 9 years
<table>
<thead>
<tr>
<th>CSC</th>
<th>ALTURA DE DESCORCHE (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm</td>
</tr>
<tr>
<td>45-50</td>
<td>19,5</td>
</tr>
<tr>
<td>50-55</td>
<td>15,4</td>
</tr>
<tr>
<td>55-57</td>
<td>13,2</td>
</tr>
<tr>
<td>60-63</td>
<td>10,0</td>
</tr>
<tr>
<td>65-70</td>
<td>7,9</td>
</tr>
<tr>
<td>70-75</td>
<td>6,6</td>
</tr>
<tr>
<td>75-80</td>
<td>5,4</td>
</tr>
<tr>
<td>80-85</td>
<td>4,3</td>
</tr>
<tr>
<td>85-90</td>
<td>3,3</td>
</tr>
<tr>
<td>90-95</td>
<td>2,3</td>
</tr>
<tr>
<td>95-100</td>
<td>1,3</td>
</tr>
</tbody>
</table>

1 Peso de corcho (PC) en kg; Circunferencia sobre corcho (CSC) en m; Altura de descorche (HD) en m
<table>
<thead>
<tr>
<th>Ano</th>
<th>Zona Norte Costa</th>
<th>Zona Centro Sur</th>
<th>Zona Sud</th>
<th>Media</th>
<th>Patatas</th>
<th>Total</th>
<th>C. Gerenciales</th>
<th>% de Fiabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CSC</th>
<th>ALTURA DE DESCORCHE (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>1.1</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>45-50</td>
<td>4.1</td>
</tr>
<tr>
<td>50-55</td>
<td>4.5</td>
</tr>
<tr>
<td>55-60</td>
<td>5.0</td>
</tr>
<tr>
<td>60-65</td>
<td>5.4</td>
</tr>
<tr>
<td>65-70</td>
<td>5.8</td>
</tr>
<tr>
<td>70-75</td>
<td>6.2</td>
</tr>
<tr>
<td>75-80</td>
<td>6.6</td>
</tr>
<tr>
<td>80-85</td>
<td>7.0</td>
</tr>
<tr>
<td>85-90</td>
<td>7.4</td>
</tr>
<tr>
<td>90-95</td>
<td>7.8</td>
</tr>
<tr>
<td>95-100</td>
<td>8.2</td>
</tr>
</tbody>
</table>

1 Peso de corcho (PC) en kg; Circunferencia sobre corcho (CSC) en m; Altura de descorche (HD) en m

Cork weight estimated by model PC=7.85 * CSC * HD
Zona n° 2: Centro y Sur de Badajoz; Turno de Descorche: 9 años

Cork weight estimated by model PC=7.85 * CSC * HD; Zone 2: Centre and South of Badajoz; stripping rotation: 9 years

G. MONTERO et al.
| CBC cm | 1,1 | 1,2 | 1,3 | 1,4 | 1,5 | 1,6 | 1,7 | 1,8 | 1,9 | 2,0 | 2,1 | 2,2 | 2,3 | 2,4 | 2,5 | 2,6 | 2,7 | 2,8 | 2,9 | 3,0 | 3,5 | 4,0 | 4,5 | 5,0 | 5,5 | 6,0 | 6,5 | 7,0 |
|--------|
| 45-50 | 4,7 | 5,2 | 5,6 | 6,0 | 6,5 | 6,8 | 7,3 | 7,6 | 8,0 | 8,2 | 8,4 | 8,5 | 8,6 | 8,7 | 8,8 | 8,9 | 9,0 | 9,1 | 9,2 | 9,3 | 9,4 | 9,5 | 9,6 | 9,7 | 9,8 | 9,9 | 10,0|
| 50-55 | 5,2 | 5,7 | 6,2 | 6,7 | 7,1 | 7,6 | 8,1 | 8,6 | 9,0 | 9,5 | 9,6 | 9,7 | 9,8 | 9,9 | 10,0| 10,1| 10,2| 10,3| 10,4| 10,5| 10,6| 10,7| 10,8| 10,9| 11,0|
| 55-60 | 5,7 | 6,3 | 6,8 | 7,3 | 7,8 | 8,3 | 8,9 | 9,4 | 9,9 | 10,0| 10,1| 10,2| 10,3| 10,4| 10,5| 10,6| 10,7| 10,8| 10,9| 11,0| 11,1| 11,2| 11,3| 11,4|
| 60-65 | 6,2 | 6,8 | 7,4 | 7,9 | 8,5 | 9,1 | 9,6 | 10,2| 10,8| 11,3| 11,9| 12,5| 13,1| 13,7| 14,3| 14,9| 15,5| 16,1| 16,7| 17,3| 17,9| 18,5| 19,1| 19,7|
| 65-70 | 6,7 | 7,3 | 7,9 | 8,5 | 9,0 | 9,6 | 10,2| 10,8| 11,4| 12,0| 12,6| 13,2| 13,8| 14,4| 15,0| 15,6| 16,2| 16,8| 17,4| 18,0| 18,6| 19,2| 19,8| 20,4|

TABLA 5

Pesos de corcho obtenidos por la aplicación de la fórmula PC = 9.07 • CBC • HD

Zona n° 3: Sierra de Huelva; Turno de Descorche: 9 años

Cork weight estimated by model PC = 9.07 • CBC • HD; Zone 3: Sierra de Huelva; stripping rotation: 9 years

 modelos producción de corcho

1 Peso de corcho (PC) en kg; Circunferencia bajo corcho (CBC) en m; Altura de descorche (HD) en m
<table>
<thead>
<tr>
<th>Altura (m)</th>
<th>Descorche (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>45</td>
</tr>
<tr>
<td>1.4</td>
<td>46</td>
</tr>
<tr>
<td>1.5</td>
<td>47</td>
</tr>
<tr>
<td>1.6</td>
<td>48</td>
</tr>
<tr>
<td>1.7</td>
<td>49</td>
</tr>
<tr>
<td>1.8</td>
<td>50</td>
</tr>
<tr>
<td>1.9</td>
<td>51</td>
</tr>
<tr>
<td>2.0</td>
<td>52</td>
</tr>
<tr>
<td>2.1</td>
<td>53</td>
</tr>
<tr>
<td>2.2</td>
<td>54</td>
</tr>
<tr>
<td>2.3</td>
<td>55</td>
</tr>
<tr>
<td>2.4</td>
<td>56</td>
</tr>
<tr>
<td>2.5</td>
<td>57</td>
</tr>
<tr>
<td>2.6</td>
<td>58</td>
</tr>
<tr>
<td>2.7</td>
<td>59</td>
</tr>
<tr>
<td>2.8</td>
<td>60</td>
</tr>
<tr>
<td>2.9</td>
<td>61</td>
</tr>
<tr>
<td>3.0</td>
<td>62</td>
</tr>
<tr>
<td>3.1</td>
<td>63</td>
</tr>
<tr>
<td>3.2</td>
<td>64</td>
</tr>
<tr>
<td>3.3</td>
<td>65</td>
</tr>
<tr>
<td>3.4</td>
<td>66</td>
</tr>
<tr>
<td>3.5</td>
<td>67</td>
</tr>
<tr>
<td>3.6</td>
<td>68</td>
</tr>
<tr>
<td>3.7</td>
<td>69</td>
</tr>
<tr>
<td>3.8</td>
<td>70</td>
</tr>
<tr>
<td>3.9</td>
<td>71</td>
</tr>
<tr>
<td>4.0</td>
<td>72</td>
</tr>
<tr>
<td>4.1</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>75</td>
</tr>
<tr>
<td>4.4</td>
<td>76</td>
</tr>
<tr>
<td>4.5</td>
<td>77</td>
</tr>
<tr>
<td>4.6</td>
<td>78</td>
</tr>
<tr>
<td>4.7</td>
<td>79</td>
</tr>
<tr>
<td>4.8</td>
<td>80</td>
</tr>
<tr>
<td>4.9</td>
<td>81</td>
</tr>
<tr>
<td>5.0</td>
<td>82</td>
</tr>
<tr>
<td>5.1</td>
<td>83</td>
</tr>
<tr>
<td>5.2</td>
<td>84</td>
</tr>
<tr>
<td>5.3</td>
<td>85</td>
</tr>
<tr>
<td>5.4</td>
<td>86</td>
</tr>
<tr>
<td>5.5</td>
<td>87</td>
</tr>
<tr>
<td>5.6</td>
<td>88</td>
</tr>
<tr>
<td>5.7</td>
<td>89</td>
</tr>
<tr>
<td>5.8</td>
<td>90</td>
</tr>
<tr>
<td>5.9</td>
<td>91</td>
</tr>
<tr>
<td>6.0</td>
<td>92</td>
</tr>
<tr>
<td>6.1</td>
<td>93</td>
</tr>
<tr>
<td>6.2</td>
<td>94</td>
</tr>
<tr>
<td>6.3</td>
<td>95</td>
</tr>
<tr>
<td>6.4</td>
<td>96</td>
</tr>
<tr>
<td>6.5</td>
<td>97</td>
</tr>
<tr>
<td>6.6</td>
<td>98</td>
</tr>
<tr>
<td>6.7</td>
<td>99</td>
</tr>
<tr>
<td>6.8</td>
<td>100</td>
</tr>
<tr>
<td>6.9</td>
<td>101</td>
</tr>
<tr>
<td>7.0</td>
<td>102</td>
</tr>
</tbody>
</table>

1 Peso de corcho (PC) en kg; Circunferencia sobre corcho (CSC) en m; Altura de descorche (HD) en m
TABLA 7

Peso de corcho obtenido por la aplicación de la fórmula PC = 12.21 • CBC • HD

| Zona nº 4: Sierras de Sevilla y Córdoba; Turno de Descorche: 9 años |

Cork weight estimated by model PC=12.21•CBC•HD; Zone 4: Sierras de Sevilla and Córdoba; stripping rotation: 9 years

<table>
<thead>
<tr>
<th>CBC</th>
<th>ALTA DE DESCORCHE (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td></td>
</tr>
<tr>
<td>45-50</td>
<td>6.4, 7.0, 7.5, 8.1, 8.7, 9.3, 9.9, 10.4, 11.0, 11.6</td>
</tr>
<tr>
<td>50-55</td>
<td>7.1, 7.7, 8.3, 9.0, 9.6, 10.3, 10.9, 11.5, 12.2, 12.8</td>
</tr>
<tr>
<td>55-60</td>
<td>7.7, 8.4, 9.1, 9.8, 10.5, 11.2, 11.9, 12.6, 13.3, 14.0</td>
</tr>
<tr>
<td>60-65</td>
<td>8.4, 9.2, 9.9, 10.7, 11.4, 12.2, 13.0, 13.7, 14.5, 15.3</td>
</tr>
<tr>
<td>65-70</td>
<td>9.1, 9.9, 10.7, 11.5, 12.4, 13.2, 14.0, 14.8, 15.7, 16.5</td>
</tr>
<tr>
<td>70-75</td>
<td>9.7, 10.6, 11.5, 12.4, 13.3, 14.2, 15.0, 15.9, 16.8, 17.7</td>
</tr>
<tr>
<td>75-80</td>
<td>10.4, 11.4, 12.3, 13.2, 14.2, 15.1, 16.1, 17.0, 18.0, 18.9</td>
</tr>
<tr>
<td>80-85</td>
<td>11.1, 12.1, 13.1, 14.1, 15.1, 16.1, 17.1, 18.1, 19.1, 20.1</td>
</tr>
<tr>
<td>85-90</td>
<td>11.6, 12.8, 13.9, 15.0, 16.0, 17.1, 18.2, 19.2, 20.3, 21.4</td>
</tr>
<tr>
<td>90-95</td>
<td>12.4, 13.6, 14.7, 15.8, 16.9, 18.1, 19.2, 20.3, 21.5, 22.6</td>
</tr>
</tbody>
</table>

1) Peso de corcho (PC) en kg; Circunferencia bajo corcho (CBC) en m; Altura de descorche (HD) en m
TABLA 8

Pesos de corcho obtenidos por la aplicación de la fórmula PC = 10.53 + CSC • HD

Zona nº 4: Sierras de Sevilla y Córdoba; Turno de Descorte: 9 años

<table>
<thead>
<tr>
<th>CSC cm</th>
<th>ALTURA DE DESCORCHE (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>45-50</td>
<td>5.5</td>
</tr>
<tr>
<td>50-60</td>
<td>6.1</td>
</tr>
<tr>
<td>55-60</td>
<td>6.7</td>
</tr>
<tr>
<td>60-70</td>
<td>7.2</td>
</tr>
<tr>
<td>65-70</td>
<td>7.8</td>
</tr>
<tr>
<td>70-80</td>
<td>8.4</td>
</tr>
<tr>
<td>75-80</td>
<td>9.0</td>
</tr>
<tr>
<td>80-85</td>
<td>9.6</td>
</tr>
<tr>
<td>85-90</td>
<td>10.1</td>
</tr>
<tr>
<td>90-95</td>
<td>10.6</td>
</tr>
<tr>
<td>95-100</td>
<td>11.2</td>
</tr>
<tr>
<td>100-105</td>
<td>11.9</td>
</tr>
<tr>
<td>105-110</td>
<td>12.5</td>
</tr>
<tr>
<td>110-115</td>
<td>13.0</td>
</tr>
<tr>
<td>115-120</td>
<td>13.6</td>
</tr>
<tr>
<td>120-125</td>
<td>14.2</td>
</tr>
<tr>
<td>125-130</td>
<td>14.8</td>
</tr>
<tr>
<td>130-135</td>
<td>15.3</td>
</tr>
<tr>
<td>135-140</td>
<td>15.9</td>
</tr>
<tr>
<td>140-145</td>
<td>16.5</td>
</tr>
<tr>
<td>145-150</td>
<td>17.1</td>
</tr>
<tr>
<td>150-155</td>
<td>18.0</td>
</tr>
<tr>
<td>155-160</td>
<td>21.5</td>
</tr>
<tr>
<td>160-165</td>
<td>24.0</td>
</tr>
<tr>
<td>165-170</td>
<td>26.0</td>
</tr>
<tr>
<td>170-175</td>
<td>29.1</td>
</tr>
<tr>
<td>175-180</td>
<td>31.8</td>
</tr>
<tr>
<td>180-185</td>
<td>34.6</td>
</tr>
<tr>
<td>185-190</td>
<td>37.5</td>
</tr>
<tr>
<td>190-195</td>
<td>40.5</td>
</tr>
<tr>
<td>195-200</td>
<td>43.7</td>
</tr>
<tr>
<td>200-205</td>
<td>46.9</td>
</tr>
<tr>
<td>205-210</td>
<td>50.3</td>
</tr>
<tr>
<td>210-215</td>
<td>53.7</td>
</tr>
<tr>
<td>215-220</td>
<td>57.3</td>
</tr>
</tbody>
</table>

1 Peso de corcho (PC) en kg; Circunferencia sobre corcho (CSC) en m; Altura de descorte (HD) en m
<table>
<thead>
<tr>
<th>CBC</th>
<th>ALTO DE DESCORCHE (m)</th>
<th>DESCORCHE (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>45-50</td>
<td>7.0</td>
<td>7.7</td>
</tr>
<tr>
<td>55-60</td>
<td>8.5</td>
<td>9.3</td>
</tr>
<tr>
<td>65-70</td>
<td>9.2</td>
<td>10.1</td>
</tr>
<tr>
<td>70-75</td>
<td>10.7</td>
<td>11.7</td>
</tr>
<tr>
<td>75-80</td>
<td>11.5</td>
<td>12.5</td>
</tr>
<tr>
<td>80-85</td>
<td>12.2</td>
<td>13.3</td>
</tr>
<tr>
<td>85-90</td>
<td>12.9</td>
<td>14.1</td>
</tr>
<tr>
<td>90-95</td>
<td>13.7</td>
<td>14.9</td>
</tr>
<tr>
<td>95-100</td>
<td>14.4</td>
<td>15.7</td>
</tr>
<tr>
<td>100-105</td>
<td>15.2</td>
<td>16.5</td>
</tr>
<tr>
<td>105-110</td>
<td>15.9</td>
<td>17.2</td>
</tr>
<tr>
<td>110-115</td>
<td>16.8</td>
<td>18.1</td>
</tr>
<tr>
<td>115-120</td>
<td>17.4</td>
<td>19.0</td>
</tr>
</tbody>
</table>

1 Pesos de corcho (PC) en kg; Circunferencia bajo corcho (CBC) en m; Altura de descorte (HD) en m
TABLA 10

Pesos de corcho obtenidos por la aplicación de la fórmula PC = 11,70 + CSC • HD

Zona no 5: Alcornocales de Cádiz y Málaga; Turno de Descorchos: 9 años

Cork weight estimated by model PC=11.70 + CBC • HD; Zone 5: Cork oak stands of Cádiz and Málaga; stripping rotation: 9 years

<table>
<thead>
<tr>
<th>CSC</th>
<th>ALTURA DE DESCORCHE (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45-50</td>
<td>5.1 6.7 7.2 7.8 8.3 8.8 9.4 10.0 10.6 11.1</td>
</tr>
<tr>
<td>50-55</td>
<td>6.8 7.4 8.0 8.6 9.2 9.8 10.4 11.1 11.7 12.3</td>
</tr>
<tr>
<td>55-60</td>
<td>7.4 8.1 8.7 9.4 10.1 10.8 11.4 12.1 12.8 13.5</td>
</tr>
<tr>
<td>60-65</td>
<td>8.0 8.8 9.5 10.2 11.0 11.7 12.4 13.2 13.9 14.6</td>
</tr>
<tr>
<td>65-70</td>
<td>8.7 9.5 10.3 11.1 11.8 12.6 13.4 14.2 15.0 15.8</td>
</tr>
<tr>
<td>70-75</td>
<td>9.3 10.2 11.0 11.9 12.7 13.6 14.4 15.2 16.1 17.0</td>
</tr>
<tr>
<td>75-80</td>
<td>10.0 10.9 11.8 12.7 13.6 14.5 15.4 16.3 17.2 18.1</td>
</tr>
<tr>
<td>80-85</td>
<td>10.6 11.6 12.5 13.5 14.5 15.4 16.4 17.3 18.2 19.1</td>
</tr>
<tr>
<td>85-90</td>
<td>11.3 12.3 13.3 14.3 15.4 16.4 17.4 18.4 19.5 20.5</td>
</tr>
<tr>
<td>90-95</td>
<td>11.9 13.0 14.1 15.2 16.3 17.3 18.4 19.5 20.6 21.6</td>
</tr>
<tr>
<td>95-100</td>
<td>12.5 13.7 14.9 16.0 17.1 18.3 19.4 20.5 21.7 22.9</td>
</tr>
<tr>
<td>100-105</td>
<td>13.2 14.4 15.6 16.8 18.0 19.2 20.4 21.6 22.8 24.0</td>
</tr>
<tr>
<td>105-110</td>
<td>13.8 15.1 16.4 17.6 18.9 20.1 21.4 22.6 23.9 25.2</td>
</tr>
<tr>
<td>110-115</td>
<td>14.5 15.8 17.1 18.4 19.7 21.1 22.4 23.7 25.0 26.3</td>
</tr>
<tr>
<td>115-120</td>
<td>15.1 16.5 17.8 19.2 20.6 22.0 23.4 24.7 26.1 27.4</td>
</tr>
<tr>
<td>120-125</td>
<td>15.8 17.2 18.6 20.1 21.5 22.9 24.4 25.8 27.2 28.7</td>
</tr>
<tr>
<td>125-130</td>
<td>16.4 17.8 19.4 20.9 22.4 23.9 25.4 26.9 28.3 29.8</td>
</tr>
<tr>
<td>130-135</td>
<td>17.1 18.6 20.2 21.7 23.3 24.8 26.4 27.9 29.5 31.0</td>
</tr>
<tr>
<td>135-140</td>
<td>17.7 19.3 20.9 22.5 24.1 25.7 27.3 28.9 30.6 32.2</td>
</tr>
<tr>
<td>140-145</td>
<td>18.3 20.0 21.7 23.3 25.0 26.7 28.3 30.0 31.7 33.3</td>
</tr>
<tr>
<td>145-150</td>
<td>18.9 20.7 22.4 24.2 25.9 27.6 29.3 31.0 32.7 34.3</td>
</tr>
<tr>
<td>150-155</td>
<td>19.5 21.3 23.0 24.8 26.5 28.3 30.0 31.7 33.4 35.1</td>
</tr>
<tr>
<td>155-160</td>
<td>20.1 21.9 23.7 25.5 27.2 28.9 30.7 32.4 34.1 35.8</td>
</tr>
<tr>
<td>160-165</td>
<td>20.7 22.6 24.4 26.2 27.9 29.6 31.3 33.0 34.8 36.5</td>
</tr>
<tr>
<td>165-170</td>
<td>21.3 23.3 25.1 26.9 28.6 30.3 32.1 33.8 35.5 37.2</td>
</tr>
<tr>
<td>170-175</td>
<td>21.9 24.0 25.8 27.6 29.5 31.3 33.1 34.9 36.6 38.4</td>
</tr>
<tr>
<td>175-180</td>
<td>22.5 24.6 26.5 28.3 30.2 32.0 33.9 35.7 37.5 39.4</td>
</tr>
<tr>
<td>180-185</td>
<td>23.1 25.2 27.1 29.0 30.9 32.8 34.7 36.6 38.4 40.3</td>
</tr>
<tr>
<td>185-190</td>
<td>23.7 25.8 27.8 29.7 31.7 33.6 35.5 37.4 39.3 41.2</td>
</tr>
<tr>
<td>190-195</td>
<td>24.3 26.4 28.5 30.4 32.4 34.3 36.2 38.1 40.0 41.9</td>
</tr>
<tr>
<td>195-200</td>
<td>24.9 27.1 29.2 31.2 33.1 35.1 37.0 38.9 40.8 42.7</td>
</tr>
<tr>
<td>200-205</td>
<td>25.5 27.7 30.0 32.0 34.0 36.0 38.0 40.0 42.0 44.0</td>
</tr>
<tr>
<td>205-210</td>
<td>26.1 28.4 30.7 32.7 34.7 36.7 38.7 40.7 42.7 44.7</td>
</tr>
<tr>
<td>210-215</td>
<td>26.7 29.0 31.3 33.3 35.3 37.4 39.4 41.4 43.4 45.4</td>
</tr>
<tr>
<td>215-220</td>
<td>27.3 29.7 32.0 34.0 36.0 38.0 40.0 42.0 44.0 46.0</td>
</tr>
<tr>
<td>220-225</td>
<td>27.9 30.3 32.6 34.6 36.6 38.6 40.6 42.6 44.6 46.6</td>
</tr>
<tr>
<td>225-230</td>
<td>28.5 30.9 33.2 35.2 37.2 39.2 41.2 43.2 45.2 47.2</td>
</tr>
<tr>
<td>230-235</td>
<td>29.1 31.5 33.9 36.0 38.0 40.0 42.0 44.0 46.0 48.0</td>
</tr>
</tbody>
</table>

1 Peso de corcho (PC) en kg; Circunferencia sobre corcho (CSC) en m; Altura de descorche (HD) en m
TABLA 11

PESOS DE CORCHO OBTENIDOS POR LA APLICACION DE LA FORMULA PC=13,94\cdot CBC\cdot HD¹

ZONA N.º 6: CATALUÑA, TURNO DE DESCORCHE: 12 AÑOS

Cork weight estimated by model \(PC = 13.94 \cdot \text{CBC} \cdot \text{HD} \);

Zones 6: Catalonia; stripping rotation: 12 years

<table>
<thead>
<tr>
<th>CBC (cm)</th>
<th>Altura de Descorch. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>45-50</td>
<td>8.6</td>
</tr>
<tr>
<td>50-55</td>
<td>9.5</td>
</tr>
<tr>
<td>55-60</td>
<td>10.4</td>
</tr>
<tr>
<td>60-65</td>
<td>11.3</td>
</tr>
<tr>
<td>65-70</td>
<td>12.2</td>
</tr>
<tr>
<td>70-75</td>
<td>13.1</td>
</tr>
<tr>
<td>75-80</td>
<td>14.0</td>
</tr>
<tr>
<td>80-85</td>
<td>15.0</td>
</tr>
<tr>
<td>85-90</td>
<td>15.9</td>
</tr>
<tr>
<td>90-95</td>
<td>16.8</td>
</tr>
<tr>
<td>95-100</td>
<td>17.7</td>
</tr>
<tr>
<td>100-105</td>
<td>18.6</td>
</tr>
<tr>
<td>105-110</td>
<td>19.5</td>
</tr>
<tr>
<td>110-115</td>
<td>20.4</td>
</tr>
<tr>
<td>115-120</td>
<td>21.3</td>
</tr>
<tr>
<td>120-125</td>
<td>22.2</td>
</tr>
<tr>
<td>125-130</td>
<td>23.1</td>
</tr>
<tr>
<td>130-135</td>
<td>24.0</td>
</tr>
<tr>
<td>135-140</td>
<td>24.9</td>
</tr>
<tr>
<td>140-145</td>
<td>25.8</td>
</tr>
<tr>
<td>145-150</td>
<td>26.7</td>
</tr>
<tr>
<td>150-155</td>
<td>27.6</td>
</tr>
</tbody>
</table>

¹ Peso de corcho (PC) en kg; Circunferencia bajo corcho (CBC) en m; Altura de descocche (HD) en m.
TABLA 12

PESOS DE CORCHO OBTENIDOS POR LA APLICACION DE LA FORMULA PC=11,43*CSC*HD

Zona N° 6: CATALUÑA, TURNO DE DESCORCHE: 12 AÑOS

*Cork weight estimated by model PC=11.43*CSC*HD; Zones 6: Catalonia; stripping rotation: 12 years*

<table>
<thead>
<tr>
<th>CSC (cm)</th>
<th>Altura de Descorche (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>45-50</td>
<td>7.1</td>
</tr>
<tr>
<td>50-55</td>
<td>7.8</td>
</tr>
<tr>
<td>55-60</td>
<td>8.5</td>
</tr>
<tr>
<td>60-65</td>
<td>9.3</td>
</tr>
<tr>
<td>65-70</td>
<td>10.0</td>
</tr>
<tr>
<td>70-75</td>
<td>10.8</td>
</tr>
<tr>
<td>75-80</td>
<td>11.5</td>
</tr>
<tr>
<td>80-85</td>
<td>12.3</td>
</tr>
<tr>
<td>85-90</td>
<td>13.0</td>
</tr>
<tr>
<td>90-95</td>
<td>13.7</td>
</tr>
<tr>
<td>95-100</td>
<td>14.5</td>
</tr>
<tr>
<td>100-105</td>
<td>15.2</td>
</tr>
<tr>
<td>105-110</td>
<td>16.0</td>
</tr>
<tr>
<td>110-115</td>
<td>16.7</td>
</tr>
<tr>
<td>115-120</td>
<td>17.5</td>
</tr>
<tr>
<td>120-125</td>
<td>18.2</td>
</tr>
<tr>
<td>125-130</td>
<td>18.9</td>
</tr>
<tr>
<td>130-135</td>
<td>19.7</td>
</tr>
<tr>
<td>135-140</td>
<td>20.4</td>
</tr>
<tr>
<td>140-145</td>
<td>21.2</td>
</tr>
<tr>
<td>145-150</td>
<td>21.9</td>
</tr>
<tr>
<td>150-155</td>
<td>22.7</td>
</tr>
</tbody>
</table>

1 Peso de corcho (PC) en kg; Circunferencia sobre corcho (CSC) en m; Altura de descorche (HD) en m.
TABLA 13

PESOS DE CORCHO OBTENIDOS POR LA APLICACION DE LA FORMULA PC=9.96·CSB·HD\(^1\)

ZONA N.° 6: CATALUÑA, TURNO DE DESCORCHE: 12 AÑOS

Cork weight estimated by model PC=9.96·CSB·HD; Zones 6: Catalonia; stripping rotation: 12 years

<table>
<thead>
<tr>
<th>CSB cm</th>
<th>Altura de Descorche (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,9</td>
</tr>
<tr>
<td>45-50</td>
<td>4,3</td>
</tr>
<tr>
<td>50-55</td>
<td>4,7</td>
</tr>
<tr>
<td>55-60</td>
<td>5,2</td>
</tr>
<tr>
<td>60-65</td>
<td>5,6</td>
</tr>
<tr>
<td>65-70</td>
<td>6,1</td>
</tr>
<tr>
<td>70-75</td>
<td>6,5</td>
</tr>
<tr>
<td>75-80</td>
<td>6,9</td>
</tr>
<tr>
<td>80-85</td>
<td>7,4</td>
</tr>
<tr>
<td>85-90</td>
<td>7,8</td>
</tr>
<tr>
<td>90-95</td>
<td>8,3</td>
</tr>
<tr>
<td>95-100</td>
<td>8,7</td>
</tr>
<tr>
<td>100-105</td>
<td>9,2</td>
</tr>
<tr>
<td>105-110</td>
<td>9,6</td>
</tr>
<tr>
<td>110-115</td>
<td>10,1</td>
</tr>
<tr>
<td>115-120</td>
<td>10,5</td>
</tr>
<tr>
<td>120-125</td>
<td>11,0</td>
</tr>
<tr>
<td>125-130</td>
<td>11,4</td>
</tr>
<tr>
<td>130-135</td>
<td>11,9</td>
</tr>
<tr>
<td>135-140</td>
<td>12,3</td>
</tr>
<tr>
<td>140-145</td>
<td>12,8</td>
</tr>
<tr>
<td>145-150</td>
<td>13,2</td>
</tr>
<tr>
<td>150-155</td>
<td>13,7</td>
</tr>
</tbody>
</table>

\(^1\) Peso de corcho (PC) en kg; Circunferencia sobre bornizo (CSB) en m; Altura de descorche (HD) en m.