MICROPROPAGACION DE POPULUS ALBA «SIBERIA EXTREMENA» A PARTIR DE AMENTOS

M. A. BUENO¹
R. ASTORGA¹
J. A. MANZANERA²
Dpto. de Sistemas Forestales. CIT-INIA Madrid¹
Unidad de Anatomía, Fisiología y Genética. E.T.S.I. Montes. U. P. Madrid²

RESUMEN

Populus alba «Siberia Extremaña» es un clon interesante por su rusticidad, de difícil enraizamiento por técnicas tradicionales de estaquillado. Se ha logrado la regeneración de plántulas a partir de callo de amento cultivado en medio de Murashige-Skoog (MS) con 2 mg/l de ácido 2,4-diclorofenoxicético (2,4-D) y 1 mg/l de kinetina. En dicho callo se obtuvo una producción óptima de yemas adventicias mediante aplicación de 1 mg/l de tidiazurón más 0,1 mg/l de ácido α-naftalén acético (ANA). Las yemas inducidas se multiplicaron en medio MS modificado más 0,1 mg/l de 6-bencil adenina (BA) y 0,002 mg/l de ANA. Los brotes obtenidos se enraizaron en «Woody Plant Medium» (WPM) con 0,2 mg/l de ácido indol-3-butírico (AIB), alcanzando una tasa del 95 p. 100 de enraizamiento. La aclimatación de las plántulas en condiciones de invernadero proporcionó una tasa de supervivencia del 96 p. 100.

PALABRAS CLAVE: Cultivo de tejidos
Micropropagación
Populus alba
Tidiazurón
Yemas adventicias

INTRODUCCION

Populus alba «Sibera extremeña» es un clon perteneciente a la Sección Leuce, originario de la comarca Siberia Extremaña (González Antoñanzas, 1979) conocido con el nombre vulgar de chopo blanco de la Siberia. Dado su nicho ecológico, es un clon rústico y de presumible resistencia a condiciones adversas tales como sequía, continentalidad, etc. Es de difícil enraizamiento (Anales IFIE, 1967). Entre sus características se pueden observar el porte cerrado, la corteza lisa y verdosa, la precocidad en la foliación y floración, y el crecimiento lento. Es femenino.

La dificultad de enraizamiento y su resistencia a condiciones adversas, ha motivado la búsqueda de su propagación mediante las técnicas de cultivo de tejidos.

Recibido: 24-10-91.
Aceptado para su publicación: 10-7-92.
La conservación de este clon, dada su rusticidad, hará factible su utilización con fines de mejora genética (Grau, Alba, 1990), manteniéndolo en un archivo clonal (Padró, 1987).

Los trabajos publicados sobre regeneración de plántulas en Populus alba no son muy numerosos. Sin embargo la respuesta morfogénica de chopos ha sido explicitada en algunas especies incluyendo híbridos del chopo blanco (Sellmer et al., 1989). Asimismo, se han utilizado diversos explantos para conseguir una regeneración más extensa (Kim et al., 1981; Park et al., 1988, 1989; Sug et al., 1990). La originalidad de este artículo radica en la regeneración de plántulas obtenidas a partir de amentos, que se consigue por primera vez en este clon.

MATERIAL Y MÉTODOS

Material vegetal

Se tomaron amentos del clon existente en el Populetum de Alcalá de Henares durante la primera semana del mes de febrero, en el inicio de la apertura de las yemas florales.

Dicho material fue previamente sumergido en alcohol etílico de 70° durante 30 segundos, y esterilizado en Clorhexina 0,8 p. 100, con unas gotas Tween 20, durante 15 minutos, seguido de tres pases de agua destilada estéril con intervalos de 5 minutos. Los amentos fueron cortados en pequeños segmentos de 3-5 mm de largo, que se introdujeron en el medio de cultivo.

Medio de iniciación del cultivo

El medio de cultivo basal fue el de Murashige y Skoog, (1962), (MS). Como reguladores de crecimiento se emplearon ácido 2,4-diclorofenoxiacético (2,4-D), en concentraciones de 0,5; 1 y 2 mg/l y kinetina (1 mg/l). Se añadió sacarosa (30 g/l) como fuente de carbono y como agente gelificante agar (8 g/l). El medio fue ajustado a pH 5,8 con NaOH 0,5 N, o CIH 0,1 N y esterilizado en autoclave a 0,7 atmósferas (115° C) durante 20 minutos.

A continuación se dispensó en placas petri estériles, a razón de 25 ml de medio por placa. Las placas se cerraron con parafilm.

Al cabo de un mes, el callo formado se pasó a MS sin reguladores de crecimiento.

Inducción de organogénesis

El callo se dividió y se pasó a medio MS más reguladores de crecimiento en un diseño factorial, con las concentraciones siguientes: 0,1; 1 y 10 mg/l de 6-bencil adenina (BA), y 0 y 0,1 mg/l de ácido α-naftalenacético (ANA), dispensados en cuatro placas petri por tratamiento. Se cultivaron cuatro callos por placa (16 callos por tratamiento) y se repicaron tres veces en el mismo medio, a intervalos de cuatro semanas.

Posteriormente, los callos provenientes del experimento anterior, se repicaron en medio MS, con las concentraciones equivalentes de Tidiazuron (0,1; 1 y 10 mg/l), combinado con ANA a concentraciones de 0 y 0,1 mg/l, según el mismo diseño del experimento anterior.

164
MICROPROPAGACION DE P. ALBA «SIBERICA EXTREMEÑA»

Medio de proliferación de yemas

Las yemas adventicias inducidas en el medio anterior se pasaron al medio MS más 1 mg/l BAP y 0,2 mg/l ANA, o bien a MS modificado, sustituyendo Fe-EDTA por 40 mg/l de Sequestrene 138 Fe G-100 (Ciba Geigy), y añadiendo 0,1 mg/l BAP y 0,002 mg/l ANA.

Medio de enraizamiento

Los brotes se pasaron a «Woody Plant Medium» (WPM; Lloyd, McCown, 1980), más 0,2 mg/l AIB.

Todos los cultivos se incubaron en una cámara climática con fotoperíodo de 16 horas de luz y un flujo fotónico de 70 μE/m²/s, dentro del espectro fotosintéticamente activo, proporcionado por lámparas fluorescentes «cool white». La temperatura diurna fue de 25° C y la nocturna de 20° C.

Fase de aclimatación

Las plantas regeneradas se aclimataron en invernadero con túnel de niebla, con un 90 p. 100 de humedad relativa. El sustrato empleado fue una mezcla de turba esterilizada y perlita a partes iguales. A las dos semanas aproximadamente, se sacaron del túnel.

RESULTADOS Y DISCUSION

Producción de callos e inducción de organogénesis

Se indujo la formación de callo a las tres semanas del inicio de los cultivos, siendo la mejor combinación de reguladores de crecimiento 2 mg/l de 2,4-D más 1 mg/l de kinetina (Fig. 1). Las demás concentraciones produjeron menos callo, en algún caso de aspecto negruzco, y no dieron lugar a organogénesis (Tabla 1). El amento, dada su juventud (Pierik, 1990), ha resultado ser un buen material en la formación de callo organogénico.

| TABLA 1 |
| COMBINACIONES DE REGULADORES DE CRECIMIENTO: PRODUCCION DE CALLO |
| Growth regulator combinations: callus production |
| (10 petri dishes per treatment, with four explants per dish) |

<table>
<thead>
<tr>
<th>2,4-D (mg/l)</th>
<th>0</th>
<th>0,5</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinetina (mg/l)</td>
<td>0</td>
<td></td>
<td>callo escaso</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>callo negruzco</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>callo escaso</td>
<td></td>
</tr>
</tbody>
</table>

(10 placas petri por tratamiento, con cuatro explantos por placa) |
(10 petri dishes per treatment, with four explants per dish) |

Después del paso a medio sin reguladores de crecimiento, se hicieron tres repicados a medio con BA y ANA, sin que se observara actividad organogénica en el callo. La sustitución de la citoquinina BA por tidiazurón (0,1 a 1 mg/l) asociado con ANA produjo yemas adventicias, dentro de los 30 primeros días de cultivo. Por el contrario, el tidiazurón en ausencia de ANA no mostró ninguna actividad organogénica (Tabla 2). Kapusta y Skibinska (1985) consiguieron inducir organogénesis en callo de *Populus alba* con MS más 0,7 mg/l BA y 0,02 mg/l ANA. Asimismo, Uddin *et al.*, (1988) obtuvieron yemas en callo de *Populus deltoides* con WPM más 0,05 mg/l BA y 0,2 mg/l ANA. En nuestras condiciones, el tratamiento que proporcionó el mayor número de yemas fue 1 mg/l tidiazurón más 0,1 mg/l ANA. También se produjeron yemas en 0,1 mg/l tidiazurón más 0,1 mg/l ANA. Nuestros resultados confirman los conseguidos por Chalupa (1987), obteniendo un número de yemas significativamente mayor en un medio con tidiazurón que en un medio suplementado con otra citoquinina derivada de la adenina.

![Fig. 1.—Formación de callo en ament (×10).](image)

Callus formation in ament (×10).

TABLA 2

INDUCCION DE ORGANOGÉNESIS (YEMAS) POR ACCION DEL TIDIAZURON Y EL ANA

Induction of organogenesis (buds) by thidiazuron and NAA action

<table>
<thead>
<tr>
<th>Nº de yemas</th>
<th>ANA (mg/l)</th>
<th>0</th>
<th>0,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tidiazurón (mg/l)</td>
<td>0,1</td>
<td>0</td>
<td>334</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>424</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

166
Proliferación, enraizamiento y transferencia a tierra

En el medio de proliferación de yemas MS con 1 mg/l de BA y 0,2 mg/l de ANA, algunos explantos mostraron síntomas de vitrificación o de clorosis. En cambio, reduciendo la concentración de citoquinina y auxina, y añadiendo Sequestrene-Fe, se favoreció el crecimiento de los mismos. Se consiguió una producción óptima con 0,1 mg/l BA y 0,002 mg/l ANA (Fig. 2), siendo la tasa de multiplicación de 3,9 brotes por explanto. Otros autores también han empleado Sequestrene-Fe (40 mg/l) como agente quelante para eliminar la clorosis en *Populus* sp. (Rutledge, Douglas, 1988). De los 100 brotes tratados con AIB (0,2 mg/l) añadido al medio (WPM), se obtuvo un 95 por 100 de enraizamiento a las tres semanas del tratamiento (Fig. 3). La supervivencia en la fase de aclimatación fue del 96 p. 100 (Fig. 4). A continuación, se trasladaron al vivero (Fig. 5).

Fig. 2.—Brotes en fase de multiplicación, con BA (0,1 mg/l) y ANA (0,002 mg/l)
Shoots in multiplication phase, with BA (0.1 mg/l) and NAA (0.002 mg/l)
Fig. 3.—Enraizamiento en WPM mas 0,2 mg/l de AIB.
Rooting in WPM plus 0.2 mg/l of IBA.

Fig. 4.—Aclimatación de plántulas en invernadero.
Plantlet acclimatization in the glasshouse.
CONCLUSIONES

A la vista de los resultados obtenidos, se puede concluir que la regeneración de plántulas del chopo blanco de la Siberia (Populus alba «Siberia Extremeña») a partir de yemas adventicias de callo de antera ha alcanzado elevadas tasas de enraizamiento y aclimatación en invernadero y vivero, lo que permite contemplar la posibilidad de su propagación en masa con un buen rendimiento económico, para su utilización en plantaciones de producción y conservación de zonas de su ámbito ecológico.

SUMMARY

Plant regeneration of Populus alba «Siberia Extremeña» from ament

Populus alba «Siberia Extremeña», a clone of great rusticity and high interest for poplar culture, is difficult to propagate by conventional cutting methods. Plant regeneration from ament callus has been achieved in Murashige-Skoog (MS) medium supplemented with 2 mg/l of 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 mg/l of kinetin. Optimal adventitious bud production arose from callus treated with 1 mg/l of thiadiazuron and 0,1 mg/l of α-naphthaleneacetic acid (NAA). Induced buds were subcultured in modified MS medium plus 0,1 mg/l of 6-benzyladenine (BA) and 0,002 mg/l of NAA. Shoots were rooted in Woody Plant Medium (WPM) plus 0,2 mg/l of indole-3-butyric acid (IBA), reaching a 95 p. 100 rooting. Acclimation of plantlets to glasshouse and nursery conditions rendered a 96 p. 100 survival tax.

KEY WORDS: Tissue culture
Micropropagation
Populus alba
Thidiazuron
Adventitious buds

REFERENCIAS BIBLIOGRAFICAS

SUNG H. S., HALL R. B. 1990. Multiple shoot regeneration from root organ cultures of *Populus alba* × *P. grandidentata*. Plant Cell, Tissue and Organ Culture 20: 53-57.