Software tools for conducting bibliometric analysis in science: An up-to-date review

Resumen

Bibliometrics has become an essential tool for assessing and analyzing the output of scientists, cooperation between universities, the effect of state-owned science funding on national research and development performance and educational efficiency, among other applications. Therefore, professionals and scientists need a range of theoretical and practical tools to measure experimental data. This review aims to provide an up-to-date review of the various tools available for conducting bibliometric and scientometric analyses, including the sources of data acquisition, performance analysis and visualization tools. The included tools were divided into three categories: general bibliometric and performance analysis, science mapping analysis, and libraries; a description of all of them is provided. A comparative analysis of the database sources support, pre-processing capabilities, analysis and visualization options were also provided in order to facilitate its understanding. Although there are numerous bibliometric databases to obtain data for bibliometric and scientometric analysis, they have been developed for a different purpose. The number of exportable records is between 500 and 50,000 and the coverage of the different science fields is unequal in each database. Concerning the analyzed tools, Bibliometrix contains the more extensive set of techniques and suitable for practitioners through Biblioshiny. VOSviewer has a fantastic visualization and is capable of loading and exporting information from many sources. SciMAT is the tool with a powerful pre-processing and export capability. In views of the variability of features, the users need to decide the desired analysis output and chose the option that better fits into their aims.

Citas

Alonso, Sergio; Cabrerizo, Francisco-Javier; Herrera-Viedma, Enrique; Herrera, Francisco (2009). “h-index: A review focused in its variants, computation and standardization for different scientific fields”. Journal of informetrics, v. 3, n. 4, pp. 273-289. https://doi.org/10.1016/j.joi.2009.04.001

Alonso, Sergio; Cabrerizo, Francisco-Javier; Herrera-Viedma, Enrique; Herrera, Francisco (2010). “hg-index: A new index to characterize the scientific output of researchers based on the h- and g-indices”. Scientometrics, v. 82, n. 2, pp. 391-400. https://doi.org/10.1007/s11192-009-0047-5

Aria, Massimo; Cuccurullo, Corrado (2017). “Bibliometrix: An R-tool for comprehensive science mapping analysis”. Journal of informetrics, v. 11, n. 4, pp. 959-975. https://doi.org/10.1016/j.joi.2017.08.007

Asimov, Isaac (2010). A short history of chemistry - An introduction to the ideas and concepts of chemistry. New York: Doubleday & Co.Inc. ISBN: 0313207690

Batagelj, Vladimir; Mrvar, Andrej (2004). “Pajek - Analysis and visualization of large networks”. Graph drawing software SE – 4, pp. 77-103. Springer Berlin Heidelberg. ISBN: 978 3 642 62214 4 https://doi.org/10.1007/978-3-642-18638-7_4

Borgatti, Stephen P.; Everett, Martin G.; Freeman, Linton C. (2002). “Ucinet 6 for Windows: Software for social network analysis”. Analytic Technologies, Harvard, MA. http://www.analytictech.com

Börner, Katy; Chen, Chaomei; Boyack, Kevin W. (2003). “Visualizing knowledge domains”. Annual review of information science and technology, v. 37, n. 1, pp. 179-255. https://doi.org/10.1002/aris.1440370106

Bornmann, Lutz; Haunschild, Robin (2018). “Alternative article-level metrics: The use of alternative metrics in research evaluation”. EMBO Reports, v. 19, e47260. https://doi.org/10.15252/embr.201847260

Bornmann, Lutz; Williams, Richard (2013). “How to calculate the practical significance of citation impact differences? An empirical example from evaluative institutional bibliometrics using adjusted predictions and marginal effects”. Journal of informetrics, v. 7, n. 2, pp. 562-574. https://doi.org/10.1016/j.joi.2013.02.005

Bostock, Michael; Ogievetsky, Vadim; Heer, Jeffrey (2011). “D3 Data-driven documents”. IEEE Transactions on visualization and computer graphics, v. 17, n. 12, pp. 2301-2309. https://doi.org/10.1109/TVCG.2011.185

Cabrerizo, Francisco-Javier; Alonso, Sergio; Herrera-Viedma, Enrique; Herrera, Francisco (2010). “q2-Index: Quantitative and qualitative evaluation based on the number and impact of papers in the Hirsch core”. Journal of informetrics, v. 4, n. 1, pp. 23-28. https://doi.org/10.1016/j.joi.2009.06.005

Chapman, Karen; Ellinger, Alexander E. (2019). “An evaluation of Web of Science, Scopus and Google Scholar citations in operations management”. International journal of logistics management, v. 30, n. 4, pp. 1039-1053. https://doi.org/10.1108/IJLM-04-2019-0110

Chen, Chaomei (2006). “CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature”. Journal of the American Society for Information Science and Technology, v. 57, pp. 359-377. https://doi.org/10.1002/asi.20317

Chen, Chaomei (2017). “Science mapping: A systematic review of the literature”. Journal of data and information science, v. 2, n. 2, pp. 1-40. https://doi.org/10.1515/jdis-2017-0006

Chen, Chaomei (2019). How to use CiteSpace. Victoria: Leanpub.

Cobo, Manuel J.; López-Herrera, Antonio G.; Herrera-Viedma, Enrique; Herrera, Francisco (2011a). “Science mapping software tools: Review, analysis, and cooperative study among tools”. Journal of the American Society for Information Science and Technology, v. 62, n. 7, pp. 1382-1402. https://doi.org/10.1002/asi.21525

Cobo, Manuel J.; López-Herrera, Antonio G.; Herrera-Viedma, Enrique; Herrera, Francisco (2011b). “An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field”. Journal of informetrics, v. 5, n. 1, pp. 146-166. https://doi.org/10.1016/j.joi.2010.10.002

Cobo, Manuel J.; López-Herrera, Antonio G.; Herrera-Viedma, Enrique; Herrera, Francisco (2012). “SciMAT: A new science mapping analysis software tool”. Journal of the American Society for Information Science and Technology, v. 63, n. 8, pp. 1609-1630. https://doi.org/10.1002/asi.22688

Egghe, Leo (2006). “Theory and practise of the g-index”. Scientometrics, v. 69, pp. 131-152. https://doi.org/10.1007/s11192-006-0144-7

Ellegaard, Ole; Wallin, Johan A. (2015). “The bibliometric analysis of scholarly production: How great is the impact?” Scientometrics, v. 105, pp. 1809-1831. https://doi.org/10.1007/s11192-015-1645-z

Fabregat-Aibar, Laura; Barberà-Mariné, M. Glòria; Terceño, Antonio; Pié, Laia (2019). “A bibliometric and visualization analysis of socially responsible funds”. Sustainability, v. 11, n. 9. https://doi.org/10.3390/su11092526

Gagolewski, Marek (2011). “Bibliometric impact assessment with R and the Citan package”. Journal of informetrics, v. 5, n. 4, pp. 678-692. https://doi.org/10.1016/j.joi.2011.06.006

Garfield, Eugene; Pudovkin, Alexander I.; Istomin, Vladimir S. (2003). “Why do we need algorithmic historiography?” Journal of the American Society for Information Science and Technology, v. 54, n. 5, pp. 400-412. https://doi.org/10.1002/asi.10226

Glänzel, Wolfgang (2012). “Bibliometric methods for detecting and analysing emerging research topics”. El profesional de la información, v. 21, n. 2, pp. 194-201. https://doi.org/10.3145/epi.2012.mar.11

Grauwin, Sebastian; Jensen, Pablo (2011). “Mapping scientific institutions”. Scientometrics, v. 89, article 943. https://doi.org/10.1007/s11192-011-0482-y

Gusenbauer, Michael (2019). “Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic databases”. Scientometrics, v. 118, pp. 177-214. https://doi.org/10.1007/s11192-018-2958-5

Gutiérrez-Salcedo, María; Martínez, M. Ángeles; Moral-Muñoz, José A.; Herrera-Viedma, Enrique; Cobo, Manuel J. (2018). “Some bibliometric procedures for analyzing and evaluating research fields”. Applied intelligence, v. 48, n. 5, pp. 1275-1287. https://doi.org/10.1007/s10489-017-1105-y

Harzing, Anne-Wil (2008). “Reflections on the h-index”. https://harzing.com/publications/white-papers/reflections-on-the-h-index

Harzing, Anne-Wil; Alakangas, Satu (2017). “Microsoft Academic: is the phoenix getting wings?” Scientometrics, v. 110, n. 1, pp. 371-383. https://doi.org/10.1007/s11192-016-2185-x

Harzing, Anne-Will K.; Van-der-Wal, Ron (2008). “Google Scholar as a new source for citation analysis”. Ethics in science and environmental politics, v. 8, n. 1, pp. 61-73. https://doi.org/10.3354/esep00076

Haunschild, Robin; Hug, Sven E.; Brändle, Martin P.; Bornmann, Lutz (2018). “The number of linked references of publications in Microsoft Academic in comparison with the Web of Science”. Scientometrics, v. 114, pp. 367-370. https://doi.org/10.1007/s11192-017-2567-8

Hirsch, Jorge E. (2005). “An index to quantify an individual’s scientific research output”. Proceedings of the National Academy of Sciences of the United States of America, v. 102, n. 46, pp. 16569-16572. https://doi.org/10.1073/pnas.0507655102

Hug, Sven E.; Ochsner, Michael; Brändle, Martin P. (2017). “Citation analysis with Microsoft Academic”. Scientometrics, v. 111, pp. 371-378. https://doi.org/10.1007/s11192-017-2247-8

Ibba, Simona; Pani, Filippo-Eros; Stockton, John-Gregory; Barabino, Giulio; Marchesi, Michele; Tigano, Danilo (2017). “Incidence of predatory journals in computer science literature”. Library review, v. 66, n. 6/7, pp. 505-522. https://doi.org/10.1108/LR-12-2016-0108

Martín-Martín, Alberto; Orduña-Malea, Enrique; Delgado-López-Cózar, Emilio (2018). “Coverage of highly-cited documents in Google Scholar, Web of Science, and Scopus: a multidisciplinary comparison”. Scientometrics, v. 116, pp. 2175-2188. https://doi.org/10.1007/s11192-018-2820-9

Martín-Martín, Alberto; Orduña-Malea, Enrique; Harzing, Anne-Wil; Delgado-López-Cózar, Emilio (2017). “Can we use Google Scholar to identify highly-cited documents?”. Journal of informetrics, v. 11, n. 1, pp. 152-163. https://doi.org/10.1016/j.joi.2016.11.008

Marx, Werner; Bornmann, Lutz; Barth, Andreas; Leydesdorff, Loet (2014). “Detecting the historical roots of research fields by reference publication year spectroscopy (RPYS)”. Journal of the Association for Information Science and Technology, v. 65, n. 4, pp. 751-764. https://doi.org/10.1002/asi.23089

McLevey, John; McIlroy-Young, Reid (2017). “Introducing metaknowledge: Software for computational research in information science, network analysis, and science of science”. Journal of informetrics, v. 11, n. 1, pp. 176-197. https://doi.org/10.1016/j.joi.2016.12.005

Mongeon, Philippe; Paul-Hus, Adèle (2016). “The journal coverage of Web of Science and Scopus: a comparative analysis”. Scientometrics, v. 106, pp. 213-228. https://doi.org/10.1007/s11192-015-1765-5

Moral-Muñoz, José A.; López-Herrera, Antonio G.; Herrera-Viedma, Enrique; Cobo, Manuel J. (2019). “Science mapping analysis software tools: A review”. Springer handbook of science and technology indicators, pp. 159-185. https://doi.org/10.1007/978-3-030-02511-3_7

Narin, Francis; Hamilton, Kimberly S. (1996). “Bibliometric performance measures”. Scientometrics, v. 36, pp. 293-310. https://doi.org/10.1007/BF02129596

Noyons, Ed C. M.; Moed, Henk F.; Van-Raan, Anthony F. J. (1999). “Integrating research performance analysis and science mapping”. Scientometrics, v. 46, pp. 591-604. https://doi.org/10.1007/BF02459614

O’Connell, Ann A.; Borg, Ingwer; Groenen, Patrick (1999). “Modern multidimensional scaling: Theory and applications”. Journal of the American Statistical Association, v. 94, n. 445, pp. 338-339. https://doi.org/10.2307/2669710

Orduña-Malea, Enrique; Delgado-López-Cózar, Emilio (2018). “Dimensions: re-discovering the ecosystem of scientific information”. El profesional de la información, v. 27, n. 2, pp. 420-431. https://doi.org/10.3145/epi.2018.mar.21

Pan, Xuelian; Yan, Erjia; Cui, Ming; Hua, Weina (2018). “Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools”. Journal of informetrics, v. 12, n. 2, pp. 481-493. https://doi.org/10.1016/j.joi.2018.03.005

Persson, Olle; Danell, Rickard; Wiborg-Schneider, Jesper (2009). “How to use Bibexcel for various types of bibliometric analysis”. Celebrating scholarly communications studies: A festschrift for Olle Persson at his 60th birthday, pp. 9-24. https://portal.research.lu.se/ws/files/5902071/1458992.pdf

Pradhan, Pallab (2016). “Science mapping and visualization tools used in bibliometric & scientometric studies: An overview”. Inflibnet newsletter. http://hdl.handle.net/1944/2132

Pritchard, Alan (1969). “Statistical bibliography or bibliometrics?”. Journal of documentation, v. 25, n. 4, pp. 348-349.

Ruiz-Rosero, Juan; Ramírez-González, Gustavo; Viveros-Delgado, Jesús (2019). “Software survey: ScientoPy, a scientometric tool for topics trend analysis in scientific publications”. Scientometrics, v. 121, n. 2, pp. 1165-1188. https://doi.org/10.1007/s11192-019-03213-w

Sangam, Shivappa L.; Mogali, Shivaranjini S. (2012). “Mapping and visualization softwares tools: a review”. Content management in networked environment, p. 11. https://www.researchgate.net/publication/260165605_Mapping_and_Visualization_Softwares_tools_a_review

Sci2 Team (2009). “Science of science (Sci2) Tool”. http://sci.slis.indiana.edu

Skute, Igors; Zalewska-Kurek, Kasia; Hatak, Isabella; De-Weerd-Nederhof, Petra (2019). “Mapping the field: a bibliometric analysis of the literature on university–industry collaborations”. Journal of technology transfer, v. 44, n. 3, pp. 916-947. https://doi.org/10.1007/s10961-017-9637-1

Small, Henry (1999). “Visualizing science by citation mapping”. Journal of the American Society for Information Science, v. 50, n. 9, pp. 799-813. https://doi.org/10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G

Thelwall, Mike (2018). “Dimensions: A competitor to Scopus and the Web of Science?”. Journal of informetrics, v. 12, n. 2, pp. 430-435. https://doi.org/10.1016/j.joi.2018.03.006

Thor, Andreas; Marx, Werner; Leydesdorff, Loet; Bornmann, Lutz (2016). “Introducing CitedReferencesExplorer (CRExplorer): A program for reference publication year spectroscopy with cited references standardization”. Journal of Informetrics, v. 10, n. 2, pp. 503-515. https://doi.org/10.1016/j.joi.2016.02.005

Uddin, Ashraf; Bhoosreddy, Jaideep; Tiwari, Marisha; Singh, Vivek-Kumar (2016). “A Sciento-text framework to characterize research strength of institutions at fine-grained thematic area level”. Scientometrics, v. 106, n. 3, pp. 1135-1150. https://doi.org/10.1007/s11192-016-1836-2

Van-Eck, Nees-Jan; Waltman, Ludo (2007). “Bibliometric mapping of the computational intelligence field”. International journal of uncertainty, fuzziness and knowlege-based systems, v. 15, n. 5, pp. 625-645. https://doi.org/10.1142/S0218488507004911

Van-Eck, Nees-Jan; Waltman, Ludo (2010). “Software survey: VOSviewer, a computer program for bibliometric mapping”. Scientometrics, v. 84, n. 2, pp. 523-538. https://doi.org/10.1007/s11192-009-0146-3

Van-Eck, Nees-Jan; Waltman, Ludo (2014). “CitNetExplorer: A new software tool for analyzing and visualizing citation networks”. Journal of informetrics, v. 8, n. 4, pp. 802-823. https://doi.org/10.1016/j.joi.2014.07.006

Van-Raan, Anthony F. J. (1999). “Advanced bibliometric methods for the evaluation of universities”. Scientometrics, v. 45, n. 3, pp. 417-423. https://doi.org/10.1007/BF02457601

Van-Raan, Anthony F. J. (2004a). “Measuring science. Capita selecta of current main issues”. In: Moed, Henk F.; Glänzel, Wolfgang; Schmoch, Ulrich (eds.). Handbook of quantitative science and technology research: The use of publication and patent statistics in studies of s&t systems. Wolters Kluwer, pp. 19-50. ISBN: 1 4020 2702 8

Van-Raan, Anthony F. J. (2004b). “Sleeping beauties in science”. Scientometrics, v. 59, n. 3, pp. 467-472. https://doi.org/10.1023/B:SCIE.0000018543.82441.f1

Veeranjaneyulu, K. (2017). “Altmetrics: new tools to measure research impact in the digitally networked”. In: National conference of agricultural librarians and user community. https://bit.ly/2rS7e1e

Waltman, Ludo; Van-Eck, Nees-Jan; Noyons, Ed C. M. (2010). “A unified approach to mapping and clustering of bibliometric networks”. Journal of Informetrics, v. 4, n. 4, pp. 629-635. https://doi.org/10.1016/j.joi.2010.07.002

Publicado
2020-01-19
Sección
Artículos de revisión / Review articles