Acceso abierto Acceso abierto  Acceso restringido Suscripción o acceso de pago

Automatizing chromatic quality assessment for cultural heritage image digitization

Ana Granados, Valentín Moreno-Pelayo, Jesús Robledano-Arillo


In the context of digitization of photographs and other documents with graphical value, cultural heritage organizations need to give a guarantee that the stored digital image is a faithful representation of the physical image both at the physical level and the perceptual level. On the physical level, image quality can be measured objectively in a simple way by applying certain physical attributes to the image, as well as by measuring how distorting images affects the performance of the attributes. However, on the perceptual level, image quality should correspond to the perception that a human expert would experience when observing the physical image under certain determined and controlled conditions. In this paper we address the problem of image quality assessment (IQA) in the context of cultural heritage digitization by applying machine learning (ML). In particular, we explore the possibility of creating a decision tree that mimics the response of an expert on cultural heritage when observing cultural heritage images.

Palabras clave

Photography collections; Cultural heritage digitization; Image quality assessment (IQA); Color; Machine learning (ML); Decision trees; Automatic classification; Learning models; Algorithms.

Texto completo:

PDF (English)


Aydin, Tunç-Ozan; Mantiuk, Rafal; Myszkowski, Karol; Seidel, Hans-Peter (2008). “Dynamic range independent image quality assessment”. ACM transactions on graphics, v. 27, n. 3, article n. 69.

Brandão, Tomás; Queluz, Maria-Paula (2008). “No-reference image quality assessment based on DCT domain statistics”. Signal processing, v. 88, n. 4, pp. 822-833.

Breiman, Leo (1996). “Bagging predictors”. Machine learning, v. 24, n. 2, pp. 123-140.

Cadík, Martin; Herzog, Robert; Mantiuk, Rafal; Myszkowski, Karol; Seidel, Hans-Peter (2012). “New measurements reveal weaknesses of image quality metrics in evaluating graphics artifacts”. ACM transactions on graphics, v. 31, n. 6, article n. 147.

Chang, Huiwen; Yu, Ficher; Wang, Jue; Ashley, Douglas; Finkelstein, Adam (2016). “Automatic triage for a photo series”. ACM transactions on graphics, v. 35, n. 4, article n. 148.

Charrier, Christophe; Lézoray, Olivier; Lebrun, Gilles (2012). “Machine learning to design full-reference image quality assessment algorithm”. Signal processing: Image communication, v. 27, n. 3, pp. 209-219.

De, Indrajit; Sil, Jaya (2011). “No reference image quality assessment using fuzzy relational classifier”. In: Deng Hepu; Miao, Duoquian; Lei, Jingsheng; Wang, Fu-Lee (eds.). Intl conf on artificial intelligence and computational intelligence. AICI 2011. Lecture notes in computer science, v. 7002, pp. 551-558. ISBN: 978 3 642 23880 2

Engeldrum, Peter G. (1995). “A framework for image quality models”. Journal of imaging science and technology, v. 39, n. 4, pp. 312-318.

Engeldrum, Peter G. (2004). “A theory of image quality: The image quality circle”. Journal of imaging science and technology, v. 48, n. 5, pp. 446-456.

Fadgi (2010). Technical guidelines for digitizing cultural heritage materials: Creation of raster image master files. For the following originals - manuscripts, books, graphic illustrations, artwork, maps, plans, photographs, aerial photographs, and objects and artifacts. Federal Agencies Digitization Initiative; Still Image Working Group.

Frey, Franzisca S.; Reilly, James M. (2006). Digital imaging for photographic collections: Foundations for technical standards (2nd ed.). Rochester, NY: Image Permanence Institute.

Gao, Xinbo; Gao, Fei; Tao, Dacheng; Li, Xuelog (2013). “Universal blind image quality assessment metrics via natural scene statistics and multiple kernel learning”. IEEE Transactions on neural networks and learning systems, v. 24, n. 12, pp. 2013-2026.

Gastaldo, Paolo; Zunino, Rodolfo; Heynderickx, Ingrid; Vicario, Elena (2005). “Objective quality assessment of displayed images by using neural networks”. Signal processing: Image communication, v. 20, n. 7, pp. 643-661.

Gastaldo, Paolo; Zunino, Rodolfo; Redi, Judith (2013). “Supporting visual quality assessment with machine learning”. Eurasip, Journal on image and video processing, n. 54, pp. 1-15.

Hall, Mark; Frank, Elbe; Holmes, Geoffrey; Pfahringer, Bernhard; Reutemann, Peter; Witten, Ian H. (2009). “The WEKA data mining software: An update”. Sigkdd Explorations, v. 11, n. 1, pp. 10-18.

ISO (2008). ISO 11664-4:2008 (CIE S 014-4/E:2007). Colorimetry - Part 4: CIE 1976 L*a*b* colour space. Geneva, Switzerland: International Organization for Standardization.

ISO (2009). ISO 3664:2009. Graphic technology and photography - Viewing conditions. Geneva, Switzerland: International Organization for Standardization.

ISO (2012). ISO 20462-3:2012. Photography - Psychophysical experimental methods for estimating image quality - Part 3: Quality ruler method. Geneva, Switzerland: International Organization for Standardization.

ISO (2015). ISO 12646:2015. Graphic technology - Displays for colour proofing – Characteristics. Geneva, Switzerland: International Organization for Standardization.

ISO (2017a). ISO 19263-1:2017. Photography - Archiving systems. Part 1: Best practices for digital image capture of cultural heritage material. Geneva, Switzerland: International Organization for Standardization.

ISO (2017b). ISO/TS 19264-1:2017. Photography - Archiving systems -- Image quality analysis - Part 1: Reflective originals. Geneva, Switzerland: International Organization for Standardization.

Kopf, Johannes; Kienzle, Wolf; Drucker, Steven; Kang, Sing-Bing (2012). “Quality prediction for image completion”. ACM transactions on graphics, v. 31, n. 6, article n. 131.

Kusuma, Tubagus-Maulana; Zepernick, Hans-Jürgen (2003). “A reduced-reference perceptual quality metric for in-service image quality assessment”. In: SympoTIC’03. Joint first Workshop on mobile future and Symposium on trends in communications. IEEE, pp. 71-74.

Larson, Eric C.; Chandler, Damon M. (2010). “Most apparent distortion: Full-reference image quality assessment and the role of strategy”. Journal of electronic imaging, v. 19, n. 1, pp. 1-21.

Li, Chaofeng; Bovik, Alan C.; Wu, Xiaojun (2011). “Blind image quality assessment using a general regression neural network”. IEEE Transactions on neural networks, v. 22, n. 5, pp. 793-799.

Li, Qiang; Wang, Zhou (2009). “Reduced-reference image quality assessment using divisive normalization-based image representation”. IEEE Journal of selected topics in signal processing, v. 3, n. 2, pp. 202-211.

Lin, Weisi; Kuo, C. C. Jay (2011). “Perceptual visual quality metrics: A survey”. Journal of visual communication and image representation, v. 22, n. 4, pp. 297-312.

Liu, Mohan; Konya, Iuliu; Nandzik, Jan; Flores-Herr, Nicolas; Eickeler, Stefan; Ndjiki-Nya, Patrick (2012). “A new quality assessment and improvement system for print media”. Eurasip, Journal on advances in signal processing, v. 2012, n. 109.

Liu, Tsung-Jung; Lin, Weisi; Kuo, C. C. Jay (2013). “Image quality assessment using multi-method fusion”. IEEE transactions on image processing, v. 22, n. 5, pp. 1793-1807.

Luo, Ming-Ronnier; Cui, Guihua; Rigg, Bryan (2001). “The development of the CIE 2000 colour-difference formula: CIEDE2000”. Color research & application, v. 26, n. 5, pp. 340-350.

Ma, Lin; Li, Songnan; Zhang, Fan; Ngan, King-Ngi (2011). “Reduced-reference image quality assessment using reorganized DCT-based image representation”. IEEE Transactions on multimedia, v. 13, n. 4, pp. 824-829.

Major, John A.; Mangano, John J. (1995). “Selecting among rules induced from a hurricane database”. Journal of intelligent information systems, v. 4, n. 1, pp. 39-52.

Mantiuk, Rafat; Kim, Kil-Joong; Rempel, Allan G.; Heidrich, Wolfgang (2011). “HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions”. ACM Transactions on graphics, v. 30, n. 4, article n. 40.

Mittal, Anish; Moorthy, Anush-Krishna; Bovik, Alan C. (2012). “No-reference image quality assessment in the spatial domain”. IEEE Transactions on image processing, v. 21, n. 12, pp. 4695-4708.

Narwaria, Manish; Lin, Weisi; Cetin, A. Enis (2012). “Scalable image quality assessment with 2D mel-cepstrum and machine learning approach”. Pattern recognition, v. 45, n. 1, pp. 299-313.

Nationaal Archief of the Netherlands (2010). Digitisation of photographic materials. Guidelines. September 2010.

Oeztireli, A. Cengiz; Gross, Markus (2015). “Perceptually based downscaling of images”. ACM Transactions on graphics, v. 34, n. 4, article n. 77.

Ponomarenko, Nikolay; Jin, Lina; Ieremeiev, Oleg; Lukin, Vladimir; Egiazarian, Karen; Astola, Jaakko; Vozel, Benoit; Chehdi, Kacem; Carli, Marco; Battisti, Federica; Kuo, C. C. Jay (2015). “Image database TID2013: Peculiarities, results and perspectives”. Signal processing: Image communication, v. 30, pp. 57-77.

Puglia, Steven; Reed, Jeffrey; Rhodes, Erin (2004). Technical guidelines for digitizing archival materials for electronic access: Creation of production master files - Raster images. U. S. National Archives and Records Administration (NARA).

Quinlan, J. Ross (1992). C4.5: Programs for machine learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. ISBN: 978 1 558602380

Robledano-Arillo, Jesús (2016). “25 years of digital conversión, state of the art”. In: Conservation of photographs: 30 years of science. Pamplona, Spain: CAAP. ISBN: 978 84 608 4647 5

Robledano-Arillo, Jesús; Moreno-Pelayo, Valentín; Pereira-Uzal, José-Manuel (2016). “Aproximación experimental al uso de métricas objetivas para la estimación de calidad cromática en la digitalización de patrimonio documental gráfico”. Revista española de documentación científica, v. 39, n. 2.

English version on:

Robledano-Arillo, Jesús; Navarro-Bonilla, Diego (2017). “Aproximación sistemática a la creación de versiones digitales de negativos fotográficos históricos”. El profesional de la información, v. 26, n. 6, pp. 1172-1183.

Sheikh, Hamid R.; Bovik, Alan C. (2006). “Image information and visual quality”. IEEE Transactions on image processing, v. 15, n. 2, pp. 430-444.

Sheikh, Hamid R.; Bovik, Alan C.; Cormack, Lawrence (2005). “No-reference quality assessment using natural scene statistics: JPEG2000”. IEEE Transactions on image processing, v. 14, n. 11, pp. 1918-1927.

Sheikh, Hamid R.; Sabir, Muhammad-Farooq; Bovik, Alan C. (2006). “A statistical evaluation of recent full reference image quality assessment algorithms”. IEEE Transactions on image processing, v. 15, n. 11, pp. 3440-3451.

Suresh, Sundaram; Babu, R. Venkatesh; Kim, Hyoung J. (2009). “No-reference image quality assessment using modified extreme learning machine classifier”. Applied soft computing, v. 9, n. 2, pp. 541-552.

Van-Dormolen, Hans (2012). Metamorfoze preservation imaging guidelines. Image quality, version 1.0. National Archives of the Neetherlands. January 2012.

Wang, Zhou; Bovik, Alan C.; Sheikh, Hamid R.; Simoncelli, Eero-Peter (2004). “Image quality assessment: From error visibility to structural similarity”. IEEE Transactions on image processing, v. 13, n. 4, pp. 600-612.

Wang, Zhou; Simoncelli, Eero P. (2005). “Reduced-reference image quality assessment using a wavelet-domain natural image statistic model”. In: Rogowitz, Bernice E.; Pappas, Thrasyvoulos N.; Daly, Scott J. (eds.). Proceedings of SPIE. Human vision and electronic imaging X (18 March 2995), v. 5666, pp. 149-159.

Wang, Zhou; Simoncelli, Eero P.; Bovik, Alan C. (2003). “Multi-scale structural similarity for image quality assessment”. In: Matthews, M. B. (ed.). The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, v. 2, pp. 1398-1402.

Williams, Don; Longman, Jere (2003). “Debunking specsmanship: Progress on ISO/TC42 standards for digital capture imaging performance”. In: IS&T PICS Conference, pp. 77-81.

Zhang, Lin; Zhang, Lei; Mou, Xuanqin; Zhang, David (2011). “FSIM: A feature similarity index for image quality assessment”. IEEE Transactions on image processing, v. 20, n. 8, pp. 2378-2386.

Zhao, Yang; Campisi, Patrizio; Kundur, Deepa (2004). “Dual domain watermarking for authentication and compression of cultural heritage image”. IEEE Transactions on image processing, v. 13, n. 3, pp. 430-448.


Copyright (c) 2019 El Profesional de la Información