EXCELLENCE WITH LEADERSHIP: THE CROWN INDICATOR OF SCIMAGO INSTITUTIONS RANKINGS IBER REPORT

Veljko Jeremić, Marina Jovanović-Milenković, Zoran Radojičić, and Milan Martić

Abstract
Although there are many models for ranking higher education institutions, the SCImago Institutions Rankings methodology stands out for its ability to present quantitative and qualitative indicators of scientific output. Besides Total number of published papers, several indicators are concerned with quality dimensions of published papers, such as International collaboration, Scientific leadership or High quality publications. However, official rankings are provided solely on the basis of one indicator: Output (total number of published papers). This paper presents a statistical I-distance method that integrates all the indicators into one value, which therefore represent a rank and show which of the input indicators is the most important for the process of ranking. Our results clearly showed that Excellence with Leadership occupies the most significant spot.
1. Introduction

The increasing number of methodologies for ranking higher education institutions (HEI) has attracted many different stakeholders, especially students. Consequently, those rankings are quite often used as an indicator of a university’s reputation and performance (Agasisti; Pérez-Esparrells, 2010; Altbach, 2013; Bonaccorsi; Daraio, 2008; Bowman; Bastedo, 2011; Hazekorn, 2011; Hien, 2010; Jeremić et al., 2011; Marginson, 2011; Sadik, 1978; Salmi, 2003; Torres-Salinas et al., 2011; García et al., 2012). One can argue that “University rankings are very appealing, in that they provide a single number that allows, at a glance, to situate a given university in the worldwide context. However, this very simplicity of use can be highly misleading in that most rankings are based on a simple formula that aggregate subjectively chosen indicators” (Saisana; D’Hombres, 2008). Almost certainly, the most cited ranking list is the Academic Ranking of World Universities (ARWU), which has been the focus of researchers (Paruolo et al., 2013; Saisana; D’Hombres; Saltelli, 2011) since its first creation in 2003 (Aguiló et al., 2010; Dehon; McMathie; Verardi, 2010; Jovanović et al., 2012; D’Amico, 2008, 2011; D’Amico et al., 2012). Yet, almost immediately after the release of its first ranking, the ARWU attracted a great deal of criticism (D’Amico, 2012, 2013; Billaut; Bouyssou; Vincke, 2010). One of the potential weaknesses frequently highlighted (Nishy et al., 2012; Prathap, 2012a, 2013; Radojičić; Jeremić, 2012) is the absence of scientific quality indicators such as high quality papers (those ranked in the first quartile ~ 25% in their categories), etc. Thus, the latest release of the SCImago Institutions Rankings (SIR) Iber reports (SIR, 2013), which quantifies the research performance of 1,600 leading research institutions of Ibero-American countries, brings even more to the table (Prathap, 2012b).

The SIR approach integrates one quantitative and various qualitative variables. The Output (O) indicator is a measure of the quantity of an institution’s publication output. It represents the total number of documents published in scholarly journals indexed in Scopus (Romó-Fernández et al., 2011).

Seven other variables represent the quality dimension of scientific output: International collaboration (IC), Normalized impact (NI), High quality publications (Q1), Specialization index (SI), Excellence rate (ER), Scientific lead (Lead) and Excellence with leadership (Ewl).

The IC variable represents an institution’s output ratio produced in collaboration with foreign institutions. The values are computed by analyzing output with affiliations including more than one country address (Guerrero-Bote; Olmeda-Gómez; De-Moya-Anegón, 2013; Lanchero-Barrantes; Guerrero-Bote; De-Moya-Anegón, 2013). However, the question raised is whether this characteristic actually provides insight into scientific output, since cooperation of Serbian and Montenegrin universities, for instance, is international while these countries were until recently one state union. Further, NI compares the average scientific impact of the institution with the world average (taken as 1). Thus, a score of 0.8 implies a performance 20% below average, whereas a score of 1.3 means the institution is considered 30% above average (González-Pereira; Guerrero-Bote; De-Moya-Anegón, 2010). One can argue that since “citation is counted only if it is made to an item published in the three previous years”, some important citations have been excluded (Getachew-Dinku, 2011).

Also, Q1 is the ratio of publications that the institution publishes in what the SCImago team takes as the most influential scholarly journals of the world: those ranked in the first quartile (25%) in their categories as calculated by SCImago.
Journal Rank. Since this is reported as a percentage, the ratio (Q1/25) is a crude normalized proxy for quality of publication, with a value of 1 taken as the world average (Miguel; Chinchilla-Rodríguez; De-Moya-Anegón, 2011). It is essential to mention that SJR doesn’t include journals’ self-cites (as done by Thomson Reuters IF) and the weight of citations depends upon the “prestige” of the citing journal (Falagas et al., 2008).

The SI variable indicates the extent of thematic concentration/dispersion of an institution’s scientific output. The values of this indicator range between 0 and 1, indicating more generalist or specialized institutions, respectively (López-Illescas; De-Moya-Anegón; Moed, 2011). On the other hand, ER indicates the percentage of an institution’s scientific output that is included in the set formed by 10% of the most-cited papers in their respective scientific fields. This indicator serves as a measure of the high-quality output of research institutions. Again, the ratio ER/10 allows one to normalize this indicator so that the world average becomes 1 (Bornmann; De-Moya-Anegón; Leydesdorff, 2012). Lead indicates an institution’s “output as main contributor”, that is the number of papers in which the corresponding author belongs to the institution (De-Moya-Anegón, 2012). Finally, EwI indicates the amount of documents in the Excellence rate in which the institution is the main contributor (SIR, 2013).

Nonetheless, although the SIR Iber report presents all the valuable data, the official rankings are presented based only on the number of Total published papers (indicator Output - O). Having said this, it is essential to provide a potential upgrade of current framework and create a synthesised indicator that will incorporate both the quantitative and qualitative dimensions of SIR Iber report. Further, it is vital to establish which of these dimensions provides better insight into scientific excellence of a HEI. As a possible remedy to the issue, the statistical I-distance method is elaborated and applied.

2. I-distance method

Quite frequently, the score obtained in a specific league list can seriously affect the process of taking exams, entering competitions, UN projects participation, medicine selection can seriously affect the process of taking exams, entering examinations, etc. The score obtained in a specific league list, e.g., the world ranking of the university, can seriously affect the process of taking exams, entering examinations, etc. Since this is reported as a percentage, the ranking of the university is determined by means of the squared I-distance method for all variables in all sets, and, as a result, a negative correlation coefficient and a negative coefficient of partial correlation may occur (Jeremić et al., 2011; Maletić et al., 2012). This makes them the square I-distance even more desirable. The square I-distance is given as:

$$D^2 (r,s) = \sum_{i=1}^{k} \frac{d_i^2 (r,s)}{\sigma_i^2} \prod_{j=1}^{k} (1-r_{ji.12...j-1})$$

where $d_i(r,s)$ is the distance between the values of variable X_i for e_r and e_s, e.g. the discriminate effect,

$$d_i(r,s) = x_i - \bar{x}_i, i \in \{1,...,k\}$$

σ_i the standard deviation of X_i, and $r_{ji.12...j-1}$ is a partial coefficient of the correlation between X_i and X_j, $j<i$, (Bulajić et al., 2012; Dobrota; Jeremić; Marković, 2012).

The construction of the I-distance is iterative; it is calculated through the following steps:

- Calculate the value of the discriminate effect of the variable X_i (the most significant variable, that which provides the largest amount of information on the phenomena that are to be ranked).
- Add the value of the discriminate effect of X_i which is not covered by X_j.
- Add the value of the discriminate effect of X_i which is not covered by X_j and X_i.
- Repeat the procedure for all variables (Jeremić et al., 2012; Radojičić et al., 2012).

Sometimes, it is not possible to achieve the same sign mark for all variables in all sets, and, as a result, a negative correlation coefficient and a negative coefficient of partial correlation may occur (Jeremić et al., 2011; Maletić et al., 2012). This makes them the square I-distance even more desirable. The square I-distance is given as:

$$D^2 (r,s) = \sum_{i=1}^{k} \frac{d_i^2 (r,s)}{\sigma_i^2} \prod_{j=1}^{k} (1-r_{ji.12...j-1})$$

In order to rank the entities (in this case, universities), it is necessary to have one entity fixed as a referent in the observing set using the I-distance methodology (Jeremić et al., 2012; Jovanović et al., 2012). The entity with the minimal value for each indicator or a fictive minimal entity should be utilized as the referent entity, as the ranking of the entities in the set is based on the calculated distance from the referent entity (Seke et al., 2013).

3. Results of the I-distance method

For this study, the latest release of the ScImago Institutions Rankings (SIR) Iber reports (SIR, 2013) was analyzed. Out of the 1,600 leading research institutions ranked in the SIR 2013 Iber reports, 148 universities with the Output indicator larger than 1,000 papers were selected and the I-distance method was performed on that sub dataset. The results achieved by means of the squared I-distance method for the first 20 HEI are shown below in table 1 (full list is available upon request). The construction of the I-distance uses an iterative approach, and if the rule of thumb is to reduce the duplication of information. It is done by partially integrating the variables into the creation of one value which will therefore represent the rank. Particularly interesting is that variables with different types of measurement (percentages, GDP, student enrollment rate, etc.) could easily be integrated into one variable.
As can be seen from table 1, *Universidade de São Paulo* tops the I-distance method. This university has an impressive *Output* indicator, with 47,833 published papers. On the other hand, all the other indicators are solid but far from the best. One should note that the *Universitat Rovira i Virgili* is highly placed (2nd spot), although it has a rather small number of published papers — just 4,186 (less than 10% of *São Paulo*’s output). Precisely this information is crucial because it is essential to elaborate other variables in which the *Universitat Rovira i Virgili* impresses. For instance, in a quality indicator such as *Excellence with leadership* ~ *Ewl* (10.6) and *Excellence rate* ~ ER (17.17), the *Universitat Rovira i Virgili* is one of the best universities (number one concerning the indicator “Excellence with leadership”, third in the “Excellence rate”). A similar conclusion has been noted by *Radojičić & Jeremić* (2012), for Rockefeller University, a postgraduate-only institution with a small number of published papers but fully impressive in quality indicators such as *Q1* (88.6%) and *ER* (48.8).

Consequently, it is essential to determine which of the eight input indicators is the most important for the process of ranking. Thus, this data set has been further examined and the correlation coefficients of each variable with the I-distance values have been determined. The results shown in table 2 demonstrate that the most significant variable for the calculated I-distance value is *Excellence with leadership (Ewl)*, highly correlated with the I-distance value (r = 0.676, p < 0.01). Total number of published papers (Output), *Excellence rate (ER)*, *Normalized impact (NI)* and *High quality publications (Q1)* are also very important indicators, with each correlation larger than 0.5 (p < 0.01). This finding clearly shows that the qualitative dimension of scientific output must not be neglected at any cost.

4. Concluding remarks

The increasing number of ranking methodologies used to identify the world’s best universities is pushing the academic world into becoming even more concerned with the assessment of higher education. With these rankings often used as a marketing tool for universities to show their educational or research excellence, the need to provide rankings as accurate as possible becomes exceptionally important (*Radojičić & Jeremić*, 2012). The analysis presented here stresses potential improvements in the *SCimago Institutions Ranking* methodology, with emphasis on the quality indicator of universities’ scientific output. The idea is consistent with the approach taken by *Torres-Salinas et al.* (2011), which presents the IFQ2A index as an integrated index of qualitative and quantitative scientific indicators. In addition, the *Leiden ranking* (Leiden, 2013) has some similarities with *SCimago* in terms of bibliometric data, and rankings focused on the research performance of institutions. However, in *Leiden ranking* the journals that do not have a strong international scope (i.e., not published in English or articles with authors concentrated in one or a few countries) or have a small number of references to other journals in the *Web of Science* database are being excluded from the analysis (Waltman et al., 2012). Perhaps this could be a way to go for following *SIR* lists. Moreover, by default the *Leiden ranking* reports size-independent indicators (average statistics per publication, such as a university’s average number of citations per publication). The advantage of size-independent indicators is that they enable comparisons between smaller and larger universities (Leiden, 2013). As an alternative to size-independent indicators, the *Leiden ranking* can also report size-dependent indicators, which provide overall statistics of the publications of a university (the total number of citations of the publications of a university). Size-dependent indicators are strongly influenced by the size of a university and therefore tend to be less useful for comparison purposes (Waltman et al., 2012). Furthermore, our approach could contribute to the emerging efforts to map regions of academic excellence and scientific output (*Bornmann; Leydesdorff*, 2011; *Bornmann; Waltman*, 2011; *Prathap*, 2011). Additionally, I-distance methodology could embrace the postulates of bootstrapping and we hope to encourage potential researchers in this area.
Acknowledgment

The authors would like to thank the editor and anonymous reviewers for their valuable comments and suggestions, which significantly improved the quality of the paper.

5. References

García, José A.; Rodríguez-Sánchez, Rosa; Fernández-Valdivia, Joaquín; Torres-Salinas, Daniel; Herrera, Francisco (2012). “Ranking of research output of universities on the national and statistical sciences, v. 6, n. 2, pp. 515-524. http://dx.doi.org/10.1007/s11192-009-0076-0

http://dx.doi.org/10.1007/s11192-009-0076-0
basis of the multidimensional prestige of influential fields: Spanish universities as a case of study”. *Scientometrics*, v. 93, n. 3, pp. 1081-1099.
http://dx.doi.org/10.1007/s11192-012-0740-7

http://digitalcommons.unl.edu/commstuddiss/14

http://dx.doi.org/10.1016/j.joi.2010.03.002

http://dx.doi.org/10.1002/asi.22754

http://dx.doi.org/10.1007/s10734-010-9319-5

Jeremić, Veljko; Radojičić, Zoran (2010). “A new approach in the evaluation of team chess championships rankings”. *Journal of quantitative analysis in sports*, v. 6, n. 3.
http://dx.doi.org/10.2202/1559-0410.1257

Jeremić, Veljko; Bulajić, Milica; Martić, Milan; Radojičić, Zoran (2011). “A fresh approach to evaluating the academic ranking of world universities”. *Scientometrics*, v. 87, n. 3, pp. 587-596.
http://dx.doi.org/10.1007/s11192-011-0361-6

Jeremić, Veljko; Bulajić, Milica; Martić, Milan; Marković, Aleksandar; Savić, Gordana; Jeremić, Danka; Radojičić, Zoran (2012). “An evaluation of European countries’ health systems through distance based analysis”. *Hippokratia*, v. 16, n. 2, pp. 170-174.
http://goo.gl/ClNtkA

Jovanović, Milica; Jeremić, Veljko; Savić, Gordana; Bulajić, Milica; Martić, Milan (2012). “How does the normalization of data affects the ARWU ranking?”. *Scientometrics*, v. 93, n. 2, pp. 319-327.
http://dx.doi.org/10.1007/s11192-012-0674-0

http://dx.doi.org/10.1007/s11192-012-0797-3

http://dx.doi.org/10.1007/s11192-011-0398-6

Leiden. “CWTS Leiden 2013 Rankings list and methodology”.
http://www.leidenranking.com

http://dx.doi.org/10.1111/j.1468-2273.2011.00496.x

http://eprints.rclis.org/16100
http://dx.doi.org/10.1002/asi.21532

http://dx.doi.org/10.1007/s11192-011-0594-4

http://dx.doi.org/10.1111/j.1467-985X.2012.01059.x

http://dx.doi.org/10.1007/s11192-011-0516-5

http://www.currentscience.ac.in/Volumes/102/06/0827.pdf

http://www.currentscience.ac.in/Volumes/104/04/0407.pdf

Radojičić, Zoran; Jeremić, Veljko (2012). “Quantitity or qual-