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Galectin-3 as a novel biotarget in cardiovascular alterations associated 
to development of severe aortic stenosis

La galectina-3, una nueva diana terapéutica para las alteraciones 
cardiovasculares asociadas al desarrollo de la estenosis aórtica 
severa
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ABSTRACT

Aortic stenosis is one of the most common heart 
valve diseases, as well as one of the most common caus-
es of heart failure in the elderly. Currently, there are no 
medical therapies to prevent or slow the progression of 
the disease. When symptoms develop alongside severe 
aortic stenosis, there is a poor prognosis unless aortic 
valve replacement is performed. Aortic stenosis is a het-
erogeneous disease with a complex pathophysiology in-
volving structural and biological changes of the valve, as 
well as adaptive and maladaptive compensatory chang-
es in the myocardium and vasculature in response to 
chronic pressure overload. Galectin-3 serves important 
functions in numerous biological activities including cell 
growth, apoptosis, differentiation, inflammation and fi-
brosis. With evidence emerging to support the function 
of Galectin-3, the current review aims to summarize the 
latest literature regarding the potential of Galectin-3 as 
therapeutic target in aortic valve and cardiovascular al-
terations associated with aortic stenosis.
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RESUMEN 

La estenosis aórtica severa degenerativa (EA) es 
una enfermedad muy prevalente, cuya incidencia se 
incrementará en los próximos años debido al envejeci-
miento de la población. Actualmente no existe ningún 
tratamiento farmacológico que retarde su progresión 
y, cuando aparecen los síntomas, la cirugía de recam-
bio valvular es la única opción. La EA se caracteriza 
por la calcificación de la válvula aórtica y por la apari-
ción de fibrosis miocárdica. Sin embargo, no se cono-
cen los mecanismos fisiopatológicos de la EA necesa-
rios para identificar y desarrollar nuevas estrategias 
terapéuticas adecuadas. La Galectina-3 (Gal-3) regula 
funciones biológicas como el crecimiento, la diferen-
ciación, la apoptosis, la inflamación o la fibrosis. Esta 
revisión resume los principales trabajos que describen 
el potencial de la Gal-3 como diana terapéutica para 
las alteraciones cardíacas y valvulares asociadas con 
el desarrollo de EA. 
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Aortic stenosis

Aortic stenosis (AS) is the most com-
mon heart valve disease (43%) and repre-
sents a major healthcare burden, since it is 
the third leading cause of cardiovascular 
disease1. Risk factors include male gender, 
smoking, diabetes mellitus, hypertension, 
high levels of circulating lipids, and meta-
bolic syndrome2. With the increase in the 
aging population, there is a surge in the 
prevalence of calcific aortic valve disease. 
A prediction on the number of elderly (≥70 
years) for the next few decades estimated 
that patients with severe AS will increase 
2.4 fold by the year 2040 and more than tri-
ple by the year 20603. Patients with AS have 
an 80% risk of valve replacement, progres-
sion to heart failure (HF), or death in the 
next 5 years after diagnosis4.

The aortic valve is composed of three 
leaflets attached to the fibrous ring at the 
outlet of the left ventricle. The leaflets are 
composed of a dense extracellular matrix 
usually delineated into three layers with 
diff erent matrix composition, populated 
with valve interstitial cells (VICs) and the 
entire structure covered by valve endothe-
lial cells: lamina fibrosa is the widest layer 
and faces the aortic or arterial side of the 
valve cusp, and it is composed principally 
by collagen circumferentially oriented to 
provide tensile strength6; lamina spongiosa 
is rich in glycosaminoglycans and proteo-
glycans that are believed to confer flexibil-
ity, dampen vibrations from closing, and 
resist delamination7; lamina ventricularis is 
a dense sheet of elastic fibres on the inflow 
side of the valve that is compliant, and pro-
vides elasticity and preload to the leaflets8. 
During embryogenesis the endothelial cells 
covering the primordial valve cushions mi-
grate inside the underlying matrix and un-
dergo endothelial to mesenchymal transi-
tion to become the interstitial cells9.

The pathophysiology underlying calcific 
aortic valve disease remains incompletely 
defined and there are currently no effec-
tive medical treatments capable of altering 
its course10. Chronic inflammation, fibrosis 
and calcification play an important role in 
the progression of the disease 11. The aortic 

valve leaflets are a highly specialized struc-
ture consisting mostly of VICs and complex 
extracellular matrix structures12,13. An inflam-
matory and fibrotic process in aortic valve 
in humans and animal models has been pre-
viously reported14,15. Aberrant remodelling 
of the extracellular matrix is also caused by 
the deregulated overexpression of matrix 
metalloproteinases, associated with inflam-
mation16. These events occur during the ac-
tivation of VICs towards an osteogenic-like 
phenotype, promoted by the up-regulation 
of bone morphogenetic proteins pathway17. 
Therefore, it has been shown that calcific 
aortic valve disease shares features with 
vascular calcification and atherosclerosis 
such as chronic inflammation, increased 
extracellular matrix remodelling, prolifera-
tion and differentiation of VICs and the de-
velopment of calcific lesions12,18. Of note, al-
though retrospective studies had suggested 
that statins could delay the hemodynamic 
progression rate of AS19,20, in contrast, ran-
domized controlled studies reported that a 
lipid-lowering strategy neither resulted in 
lower aortic valve-related events nor in a 
slower progression rate of stenosis21,22.

Moreover, chronic pressure overload in 
AS induces a structural remodeling of the left 
ventricle and may promote HF23 In the initial 
phases, the increased afterload imposed by 
aortic valve narrowing induces adaptive left 
ventricular hypertrophy that acts to main-
tain wall stress and cardiac output. Ultimate-
ly, this process decompensates, and patients 
transition from hypertrophy to HF and the 
development of symptoms and adverse car-
diovascular events18. This transition is pre-
dominantly driven by myocardial fibrosis 
and myocyte cell death24. Thus, the transi-
tion from hypertrophy to HF plays a key role 
in AS. A better knowledge of the underlying 
mechanisms may highlight novel mediators 
of cardiac remodeling and decompensation 
which could identify biotargets for novel 
pharmacological therapies.

GALECTIN-3

Galectin-3 (Gal-3) is a 29–35 kDa pro-
tein, member of a β-galactoside binding lec-
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tin family, localized in nucleus, cytoplasm, 
cell surface and extracellular space25. It is 
composed of a highly conserved N-termi-
nal domain and a C-terminal carbohydrate 
recognition domain, which interacts with 
glycoproteins26. The damaging effects of 
Gal-3 have been associated to its capacity 
to bind matrix proteins such as cell surface 
receptors (integrins), collagen, elastin or 
fibronectin27. The expression of this lectin 
has been reported in many tissues, includ-
ing heart, vessels and kidney28. Moreover, 
Gal-3 is expressed in many cell types of the 
cardiovascular system such as cardiac fi-
broblasts29, vascular smooth muscle cells30, 
endothelial cells31, VICs32 and inflammatory 
cells33. Gal-3 is involved in numerous phys-
iological and pathological processes some 

of which, inflammation and fibrosis, are 
pivotal contributing to pathophysiological 
mechanisms in the development and pro-
gression of HF.

The effects of Gal-3 in cells from the 
cardiovascular system have been largely 
investigated (Fig.1).

Indeed, it has been demonstrated in cell 
culture that Gal-3 turns quiescent fibroblasts 
into myofibroblasts that produce and se-
crete matrix proteins, including collagen29,34. 
Gal-3 exerts its effects during several other 
stages of fibrogenesis besides collagen pro-
duction, such as collagen maturation and 
cross-linking, which underscores the pivotal 
importance of Gal-3 in cardiovascular fibro-
sis35,36. Moreover, Gal-3 has emerged as a po-
tential mediator of cardiovascular damage 

VCMCs: vascular smooth muscle cells; VICs: valve interstitial cells.

Figure 1. Involvement of Galectin-3 in cellular pathophysiological processes 
associated with aortic stenosis.
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in different pathological situations through 
its ability to stimulate key pro-inflammatory 
molecules33. Thus, it has been demonstrated 
in human cardiac fibroblasts that Gal-3 en-
hances the production and the secretion of 
proinflammatory and profibrotic mediators 
such as interleukin-1β, IL-6, monocyte che-
moattractant protein-1, collagen type I, col-
lagen type III, fibronectin as well as the activ-
ity of metalloproteinases-1, -2 and -937. At the 
vascular level, Gal-3 increases the production 
and secretion of pro-fibrotic and pro-inflam-
matory markers in vascular smooth muscle 
cells30, contributing to arterial stiffness. In 
endothelial cells, Gal-3 increases the expres-
sion of inflammatory factors (interleukin-6, 
interleukin-8, and interleukin-1β), chemok-
ines (monocyte chemoattractant protein-1) 
and adhesion molecules38. Furthermore, Gal-
3 modulates cell surface expression and acti-
vation of vascular endothelial growth factor 
receptor 2 in human endothelial cells con-
tributing to the plasma membrane retention 
and exerting a pro-angiogenic function39. In 
VICs from aortic valves, Gal-3 also increases 
the secretion of pro-inflammatory and pro-fi-
brotic markers as well as the expression of 
calcification markers32.

Beneficial effects of Galectin-3 blockade 
on aortic valve alterations in aortic 
stenosis

Chronic pressure overload due to AS re-
sults in pathological morphological chang-
es in the cardiovascular system. These 
changes result in an initially compensatory 
phase, whose persistance could produce 
an important impact on cardiovascular 
function40. Pressure overload induces a 
modification in the aortic valves and the 
valve cusps become progressively thick-
ened, fibrosed and calcified41. Moreover, 
a combination of endothelial damage and 
lipid deposition causes inflammation with-
in the aortic valve that facilitates the infil-
tration of inflammatory cells which release 
proinflammatory factors42,43,44. In addition, 
matrix metalloproteinases secreted by VICs 
and inflammatory cells have an important 
and complex role in the restructuring of 

the aortic valve matrix43. Thus, abnormal 
remodeling in the aortic valve is also ac-
companied by the deregulated expression 
of metalloproteinases and inflammation16. 
As the stenosis-induced pressure overload 
progresses, wall shear stress across the 
aortic valve dramatically increases45, acti-
vating transforming growth factor-β146, that 
can also induce fibrosis and calcification44.

Gal-3 expression has been recently 
reported in VICs from aortic valves in pa-
tients undergoing aortic valve replace-
ment32. Moreover, Gal-3 co-localized with 
the expression of osteogenic and inflam-
matory markers in human aortic valves32. 
Furthermore, in vitro, in human VICs, Gal-3 
pharmacological inhibition with modified 
citrus pectin (MCP) as well as Gal-3 si-
lencing attenuated the pro-inflammatory, 
pro-fibrotic and pro-osteogenic response32. 
A recent study described an association 
of Gal-3 with mortality after balloon aortic 
valvuloplasty, which is indicative of a con-
tribution of local valvular Gal-3 expression 
to post-valvuloplasty restenosis47. In pres-
sure overload, there is evidence of aberrant 
matrix deposition and valve fibrosis, which 
contributes to the calcification48.

In agreement with these data, AS animals 
presented increased aortic valve inflamma-
tion, fibrosis, metalloproteinase activities 
and calcification markers. The pharmaco-
logical inhibition of Gal-3 was able to de-
crease the aortic valve inflammation, fibro-
sis, metalloproteinase activities and calcifi-
cation in absence of increased blood pres-
sure levels in the pressure overload group, 
showing the potential therapeutic benefit of 
Gal-3 inhibition both in the primary (i.e., in 
early stages of pressure overload) and sec-
ondary prevention settings (i.e., when pres-
sure overload is installed) (Fig. 2)49.

Beneficial effects of Galectin-3 blockade 
on cardiac alterations in aortic stenosis

AS accompanied by chronic pressure 
overload is a known precursor of left ven-
tricular remodeling, involving cardiac fi-
brosis and inflammation. Patients display a 
marked variation in the magnitude of their 
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left ventricular remodeling. This has recent-
ly been demonstrated to be of prognostic 
importance50. As with fibrosis in the valve, 
an imbalance in metalloproteinases and tis-
sue inhibitor of metalloproteinase activities 
and inflammation have all been implicated 
in this process. In human myocardium, Gal-
3 is mainly expressed by cardiac fibroblasts 
and can be found in extracellular matrix51. 
Moreover, increased Gal-3 expression has 
been previously shown in myocardium 
from AS patients with depressed ejection 
fraction, as compared to myocardium from 
AS patients with preserved ejection frac-
tion29, suggesting a role for Gal-3 in cardiac 
dysfunction associated with AS. Besides, 
cardiac Gal-3 expression has been found to 

be increased in animal models of pressure 
overload34,51,52 and paralleled the severity of 
left ventricular diastolic dysfunction52.

Several findings reported by our group 
deal with the potential consequences of 
Gal-3 overexpression in myocardium of AS 
patients. Firstly, cardiac Gal-3 overexpres-
sion is associated with cardiac fibrosis and 
inflammation51. Secondly, both cardiac and 
circulating Gal-3 levels positively correlat-
ed with cardiac fibrosis in AS patients53. 
Thirdly, a recent study showed that Gal-3 
may serve as a prognostic biomarker after 
transcatheter aortic valve implantation by 
reflecting the degree of myocardial fibro-
sis54. Additionally, cardiac Gal-3 expression 
is associated with inflammatory markers 

Figure 2. Beneficial effects of Galectin-3 blockade with modified citrus pectin (MCP) in aortic valve remode-
ling in an experimental model of aortic stenosis (AS). For collagen quantification (fibrosis), Sirius red stain-
ing was performed. Representative immunohistochemistry for cd68 and bone morphogenetic protein 4 are 
showed as examples of aortic valve inflammation and calcification respectively (from Ibarrola et al, 2017)56.
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and metalloproteinase-1 in myocardial bi-
opsies from AS patients18, reinforcing the 
key role of this lectin in the inflammatory 
process and in extracellular matrix remod-
eling that accompanies the development of 
AS.

Previous studies have demonstrated 
that Gal-3 pharmacological inhibition pre-

vented cardiac dysfunction, fibrosis and 
inflammation in several pathophysiological 
conditions such as hyperaldosteronism,37,55 
obesity37 or hypertension37. Similar bene-
ficial effects have been reported on cardi-
ac fibrosis, remodeling and dysfunction in 
Gal-3 knockout mice subjected to thoracic 
aortic constriction34. In line with these find-

Figure 3. Beneficial effects of Galectin-3 blockade with modified citrus pectin (MCP) in cardiac and 
vascular remodeling in an experimental model of aortic stenosis (AS). For collagen quantification (fibro-
sis), Sirius red staining was performed in cardiac and aortic sections. In myocardium, cd68 was used as 
inflammatory marker, whereas in aortic sections monocyte chemoattractant protein-1 was chosen (from 
Ibarrola et al, 201756 and Arrieta et al, 201751).
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ings, pharmacological blockade of Gal-3 is 
able to prevent cardiac fibrosis, inflamma-
tion and functional alterations in an animal 
model of early stages of AS (Fig. 3). Thus, 
these results show the key role of Gal-3 in 
the cardiac remodeling associated with AS 
development and the beneficial effects of 
Gal-3 pharmacological inhibition on cardiac 
fibrosis and inflammation, the two key pro-
cesses underlying the cardiac functional al-
terations which finally could affect cardiac 
function and AS progression, leading to HF.

Beneficial effects of Galectin-3 blockade 
on vascular alterations in aortic stenosis

At vascular level, pressure overload in-
duces and increment of the aortic diameter 
and thickening of aortic wall through the 
extracellular matrix remodeling, character-
ized by an increment of fibrosis, inflamma-
tion and calcification in vessels and aortic 
valves45,46. Ascending aortic constriction is 
the most common surgical model for cre-
ating pressure overload-induced cardiovas-
cular alterations. Gal-3 may contribute to-
ward adverse cardiovascular effects in-part 
through an effect on aortic stiffness, effects 
which cannot be attributed to generalized 
inflammation.

In a recent study, it has been demon-
strated that pharmacological Gal-3 inhibi-
tion by MCP could delay vascular remod-
eling and inflammation in a rat model of 
pressure overload (Fig. 3)51,56. Gal-3 inhibi-
tion exerts beneficial effects, decreasing 
aortic tunica media hypertrophy. Moreo-
ver, the use of MCP also decreases aortic 
fibrosis induced by pressure overload. 
Thus, the expression of collagen type I, 
fibronectin, α-smooth muscle actin, trans-
forming growth factor-β1 and connective 
tissue growth factor was decreased in AS 
rats treated with the Gal-3 pharmacologi-
cal inhibitor MCP. Complementarily, MCP 
treatment diminishes the expression of the 
inflammatory markers interleukin-6, inter-
leukin-1β, tumor necrosis factor-α, mono-
cyte chemoattractant protein-1, osteopon-
tin, cd45 and cd68 in pressure-overloaded 
aortae (Fig.  3)51,56. These results suggest 

that Gal-3 may contribute toward adverse 
cardiovascular effects in part through an 
effect on aortic stiffness. In line with these 
findings, it has been shown that Gal-3 also 
contributes to ventricular-vascular uncou-
pling in HF patients57.

CONCLUSIONS

Aortic stenosis is a disease of both the 
valve and the myocardium, characterized 
by fibrosis and calcification of valve leaf-
lets, progressive left ventricular hypertro-
phy and cardiovascular fibrosis. In aortic 
stenosis, Gal-3 expression is increased 
in aortic valves, myocardium and aorta. 
Moreover, Gal-3 is colocalized with calcifi-
cation markers in aortic valves, and with 
fibroblasts and extracellular matrix mark-
ers in myocardium. Gal-3 promotes inflam-
mation, fibrosis and calcification in primary 
valvular interstitial cells and enhances the 
expression of fibrotic and inflammatory 
markers in cardiac fibroblasts and in vas-
cular smooth muscle cells. Importantly, 
Gal-3 inhibition blocked aortic valve calci-
fication, cardiac and vascular fibrosis and 
inflammation in vivo in an experimental 
model of pressure overload. Targeting Gal-3 
may be an upstream therapeutic option for 
the treatment of aortic valve and cardiovas-
cular remodeling that accompanies the pro-
gression of aortic stenosis. More in-depth 
mechanistic studies would be needed to 
understand the mechanisms by which Gal-
3 inhibition blocks cardiovascular damage 
in aortic stenosis. Further clinical studies 
are required to establish the potential ther-
apeutic benefit of Gal-3 inhibition in aortic 
stenosis patients.
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